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Abstract

We present a query-focused multi-document ex-
tractive summarization system based on Latent
Semantic Indexing (LSI). At the heart of this
technique is the linear-algebraic technique of
Singular Value Decomposition (SVD), which
we apply to a term-by-sentence matrix repre-
senting both the corpus and queries, an ar-
rangement which allows us to discard the left
singular vectors, decreasing computation time.
Post-processing incorporates both linguistically
and statistically motivated factors. Our sys-
tem was developed on the DUC 2006 topicsets
and obtains non-jackknifed ROUGE F-scores of
0.8591 and 0.1441 for ROUGE-2 and ROUGE-
SU4 respectively, corresponding to putative fifth
place amongst the 35 teams from that year. Test-
ing on held-out DUC 2007 topicsets was also
strong and our system would have placed 16th
in that year’s competition. Moreover, in blind
human evaluation of those results, we placed 1st
among 9 teams in grammaticality, and 3rd in
both referential clarity and structure-coherence.
We obtained steady improvements throughout
our development period which suggest that fur-
ther improvement is possible with this general
approach.

1 Introduction

Challenges in automatic document summarization in-
clude homography, which leads to poor precision,
and synonymy, which leads to poor recall. Widely-
known approaches include term-clustering models such
as TF/IDF, but these incorporate strong term indepen-
dence assumptions which can distort results.

An approach which relaxes this assumption by au-
tomatically considering transitive term co-occurrence

across the input corpus is linear-algebraic Singular
Value Decomposition (SVD). Applying this factoriza-
tion to matrix of term-by-content observations has sig-
nificant application to natural language processing. First
suggested for information retrieval by Deerwester et al.
(1990), the approach has since been adapted to index-
ing (Rosario, 2000), automatic synonymy, word sense
disambiguation (Schütze, 1992), clustering, classifica-
tion, and the instant application, document summariza-
tion (Hennig, 2009).

We present an original system which demonstrates
the efficacy of the approach by obtaining putative fifth-
ranked ROUGE scores amongst DUC 2006 entrants.
Test data was provided by holding out DUC 2007 data;
on these unseen topicsets, our system places 16th out of
the 31 competitors. A feature of our system which con-
tributed to its success was its performance; the ability
to run an end-to-end experiment on all fifty topicsets in
approximately two minutes allowed us to document 140
different experiments which resulted in 11%, 33%, and
19% increases in ROUGE-1, ROUGE-2, and ROUGE
SU-4 scores, respectively, over our initial baseline im-
plementation.

Section 2 presents an overview of the theoretical basis
of our model. Section 3 surveys the processing pipeline
of our system. We review some of our experiments and
quantitative results which supervised the development
of our system in Section 4. Section 5 discusses how
we evaluated our system, and the final section discusses
future research directions and summarizes this work.

2 Singular Value Decomposition

2.1 Theory
SVD is two-mode factor analysis, allowing it to operate
on an m × n matrix of term and content vectors. By
representing these vectors in a space where intersect-
ing transitive co-occurrence relations constitute a cline
of choosable dimensionality, the SVD simultaneously



achieves noise attenuation (smoothing) (Schütze, 1992,
§5), redundancy detection, and a retrieval metric (Kon-
tostathis and Pottenger, 2002).

The singular value decomposition is defined as

Am×n = Um×dΣd×d(Vn×d)T , (1)

where d = min(m,n). In our term-by-sentence ap-
plication, m is the number of the mixed n-grams in
the vocabulary and n is number of sentences. Accord-
ing to this configuration, the left singular vectors U in-
dicate the coordinates of each n-gram in the reduced
space, the right singular vectors V give the coordinates
of each sentence, and Σ is formed by arranging the sin-
gular values–which are the lengths of the principal semi-
axes of the hyperelliptic projection of A (Golub and
Loan, 1996, 71)–along the main diagonal of an other-
wise empty d× d matrix.

The power of the decomposition exists in the fact that,
as shown in Golub and van Loan (1996, 72-73), for
any k, the maximum-likelihood 2-norm (least-squares)
approximation of rank-deficient Am×k is given by

Âm×k = Um×kΣk×k(Vn×k)T . (2)

This guarantee means that the k−dimensional space is
usefully rotated so as to align the k axes in the k direc-
tions of greatest variation.

Unfortunately, it is not obvious how to determine the
optimal k (Madsen et al., 2004), although it is worth
noting that only a single SVD operation is needed on
a corpus to experiment with different values of k. In
Section 3.6, we report on experiments with selecting k
that corresponds to a fraction of the singular value en-
ergy (Madsen et al., 2004), and how ROUGE evaluation
instead suggests a simple fixed fraction of m.

It is possible to use SVD as a dimensionality-
reduction prelude to conventional VSM-style content
clustering, and this is an approach we investigated early
in our research. We noted however, that the problem of
choosing the k parameter is then compounded by having
to choose clustering parameters as well. Informed fur-
ther by Schütze (1992), our extractive approach instead
focuses on using cosine measure directly on the right
singular vectors V in order to retrieve those sentences
that are closest to the query or queries. This approach is
discussed in the next section.

2.2 V -Matrix Queries
In information retrieval (IR) and search applications
against a fixed corpus, where queries are unknown when

the corpus is given, it is common to build a query-
agnostic SVD, and to transform queries into the SVD
space later according to

q̂ = qTUm×kΣ−1
k×k. (3)

This is an important consideration for these applications
because performing a singular value decomposition for
a large term-by-instance matrix can be computationally
intensive (Rosario, 2000, 5).

We adopt a different approach which is appropriate
for situations where the queries and the corpus are both
available at once, such as query-focused document sum-
marization. In our implementation, we append the query
sentences to the corpus sentences prior to the decom-
position. This allows us to perform the SVD computa-
tion without requesting the left singular vectors U . Sen-
tences and queries are thus simultaneously transformed
into cosine-distance comparable vectors within the V
matrix. ALGLIB (Bochkanov and Bystritsky, 2010), the
SVD computation library we use, is able to calculate the
SVD significantly faster when we indicate that we do
not need the left singular vectors, which, in turn, allows
us to conclude more experimental trials.

Intuitively, a subtle difference between this approach
and the query-agnostic method is that our approach al-
lows the SVD to capitalize on term co-occurrence in-
formation that may be present within the queries them-
selves, and between the queries and the corpus. We
construed this methodological consideration as applica-
ble to this query-focused summarization task, while ac-
knowledging that other applications may present differ-
ent requirements that preclude the approach.

2.3 Applicability

In this section, we point out some assumptions and
inherent characteristics of SVD modeling which have
been discussed in the literature. A theoretical crit-
icism of the application of SVD to document pro-
cessing is that, like other least-squares methods, this
form of matrix decomposition necessarily conditions
the maximum-likelihood guarantee mentioned in Sec-
tion 2.1 upon a normal distribution for the entries in the
term-by-content matrix. This assumption is unlikely to
be valid, as a Poisson distribution may better character-
ize the observation count data gathered in this and other
related applications (Rosario, 2000). Although this does
weaken the theoretical foundations of–and may preclude
meaningful extension of–the approach, empirical results



Figure 1: Processing pipeline schematic.

seem to justify the compromise, as they do in many other
complex NLP tasks.

Other important considerations for selecting an SVD
approach for an NLP task are that: the spatial rotation
of the A matrix vastly increases its storage costs, even
when taking dimensionality reduction into account, as
it is no longer extremely sparse (Rosario, 2000); the
“meanings” of the reduced dimensions cannot be dis-
cerned (Schütze, 1992); and the SVD computation tends
towards O(n3) (Lee, 2006).

These weaknesses being deemed few and manage-
able, the objective of our research was to empirically
evaluate the suitability of the SVD to query-focused
summarization. In particular, most NLP work with SVD
has focused on term-by-document models over large
numbers of documents and here we explore the partic-
ular characteristics of a term-by-sentence model over a
smaller number of documents. In such a model, the term
vocabulary is expected to be smaller, and the sentence
vectors are also expected to be more sparse.

3 System Overview

A schematic of our modular pipeline is shown in Fig-
ure 1. The independent processing steps shown are de-
scribed in the following sections. In order to facili-
tate experimentation, the full, research version of our
pipeline stores intermediate results at each stage.

We also built a monolithic version of the system
which enables simple end-to-end operation of the pro-
cessing steps on plaintext inputs, without persisting in-
termediate results. A sample summary produced by this
system is included in Figure 2.

3.1 Corpus Cleaning and Sentence Breaking
Our processing pipeline begins by assembling each top-
icset into a single XML file that is manipulated through
subsequent stages. We wrote our own data cleaning and
sentence breaking module for several reasons. The first
is to allow us greater flexibility in accommodating data
cleaning and sentence breaking to the specific require-
ments of subsequent modules. Secondly, in order to en-
sure the validity of our divergence statistics, we wished
to ensure that our AQUAINT corpus (Graff, 2002) back-
ground language model was built using the same process
as our topicsets. Finally, we wished to ensure adequate
performance of the system to sustain a high through-
put of experimental trials. Accordingly, this single-pass
component is able to sentence-break the entire 3 giga-
byte AQUAINT corpus in approximately 10 minutes.

The sentence breaker annotates every sentence in our
system with a number of statistics, such as entropy
and various divergence measures. Ready availability
of these statistics in the system’s internal object model
assisted our research inquiries and we intended to use
these statistics to inform topicset-dependent parameter
selection throughout the pipeline. Our final system,
however, does not incorporate statistical parameter se-
lection since, as we discuss in Section 3.5, evaluation
guided us towards simpler heuristics. Nevertheless, au-
tomatic parameterization is an area of some interest
(Kontostathis and Pottenger, 2002) which may benefit
from future research inquiry.

3.2 Stanford POS Tagging
After cleaning and sentence breaking, the queries and
sentences for each topicset are tagged using the Stan-
ford POS tagger (Toutanova et al., 2003). This uses the
left three words model trained on the Wall Street Jour-
nal corpus. This POS data integrated back into the XML
topicset files, as attributes on the 〈word〉 XML tags, by
a special pipeline step so that this information is acces-
sible to all subsequent steps in processing.

Because the POS tagger strips punctuation and splits
some tokens slightly differently than our custom sen-
tence breaker, a resolution step between the POS tagged
sentences and original data was necessary. This step in-
volves simulating the punctuation stripping and then re-
solving the differences in tokenization.

3.3 Lingpipe Anaphora Resolution
Next, each query and sentence in the topicset is sub-
mitted, as a contiguous text, to the Lingpipe’s online



Coreference resolution suite. From their web server, we
receive back the documents with named entity marked,
coreferent entity assigned the same ID, and the remain-
ing unresolved entities marked with an ID of -1. At this
point, there are 1272 unresolved anaphora after coref-
erence resolution, across 49 of the 50 DUC 2006 doc-
uments. The remaining document has fully resolved
anaphora.

Our code reads through the results to resolve the un-
resolved entities. As a heuristic for the remaining un-
resolved anaphora, we resolve each unresolved entity
to the previous person, unless there is not a previous
person, in which case it is resolved to the previous en-
tity. Said another way, resolution is achieved by mark-
ing each unresolved entity with the closest previous en-
tity that is also coreferent with a person entity, even if
the closest reference itself is not tagged as a person. In
addition to having fully resolved anaphora at this point,
gender distinction has also been assigned for most enti-
ties.

As before, the information from this stage is incorpo-
rated into a the single XML file for the topicset. In this
case, multi-word entities are encoded by enclosing one
or more word tags with a 〈metaword〉 tag pair. This tag
has an entity − id attribute which connects it to an en-
tity dictionary that is stored at the bottom of the XML
file. Equally important as the XML format, which facil-
itates unified persistence of all topicset information, is
our internal system architecture which provides an effi-
cient in-memory object model for easy experimentation
with the topicset. In our final system, anaphora identi-
fied in this step are used for term boosting. Moreover,
the richness of the representation of this information in
our system invites further experimentation and study.

3.4 Language Modeling

We construct a language model for each topicset in or-
der to determine the set of term dimensions for the A
matrix. The primary function of this step is to prune all
terms, including synthetic terms such as entity and n-
gram boosting terms, which appear only once across the
topicset. Because this analysis is performed as a last step
before constructing the A matrix–after our term boost-
ing experiments, we had a measure of protection from
generating too many term dimensions, and felt free to
experiment liberally with synthetic terms.

3.5 Sentence Selection

As discussed in Section 2, sentence selection is based on
a m-term (rows) by n-sentence (columns) matrix which
is reduced by SVD. The query sentence or sentences
are appended to the corpus as columns of the A matrix
prior to the decomposition. This allows us to recover
the transformed queries as vectors in the V matrix, and
to obtain similarity between corpus sentences and each
query by taking the dot product between the appropriate
columns in column-normalized V .

First we must choose a value for k, the number
of SVD dimensions to accept. We originally pursued
an approach where this parameter would be informed
by empirical heuristics based on information-theoretical
characteristics of the topicset, but evaluation suggested
simply taking k dimensions such that the first k singu-
lar values in Σ comprise 85% of the total singular value
mass. Because the singular values typically describe a
power curve, we observed that this figure typically re-
sults in k ≈ .6d. A natural next step was to experi-
ment with the linear factor itself, and this further simpli-
fication netted 0.6% and 0.3% gains in ROUGE-2 and
ROUGE-SU4. This was in fact the best linear factor that
we observed.

Convention for SVD algorithms is to return the sin-
gular values in descending order as a vector w. After se-
lecting a value for k, the matrix Σk×k is constructed by
populating the first k singular values ofw to the main di-
agonal of an otherwise zero-filled k×k matrix. Accord-
ingly, we include only the first k rows of V in our dot
product calculations. These dot product comparisons
between normalized columns of V inform our greedy
sentence selection heuristic. For each query, the corpus
sentences are sorted according to this measure, creating
individual sentence picking queues. Until the 250 word
limit is reached, each query takes its turn offering its
next-closest corpus vector. If its first choice has already
been picked by another query, the query does not lose its
turn but gets to choose again.

3.6 Sentence Ordering

We implemented a simple ordering heuristic for the ex-
tracted sentences. When multiple queries are processed
in the SVD A matrix, it is logical for our top-level or-
dering to be determined by which query selected the
sentence. As for the ordering of these top-level groups,
they are presented in the order in which the query sen-
tences are presented to the system. Within each top level
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Figure 2: 250-word summary of this document pro-
duced by our system, given the query “Describe the doc-
ument summarization system. Include details about ma-
jor components, system design, and theoretical founda-
tions.”

group, we next order each queries’ respondent sentences
according to the topicset document that it appeared in
(again taking this order from the order in which the doc-
uments are presented to the system) and, within this or-
dering, according to the original order of the sentences
in the document.

3.7 Synthetic Output

Although our system is essentially extractive, our most
recent work was to extend our system to support syn-
thetic output. We discuss this work here in order to draw
attention to this important system design consideration.

In contrast with a system which emits original ex-
tracted sentences as strings (or regex−modified strings)

from the original source, we define a synthetic extractive
system as one which reconstitutes its output sentences
based on its internal word model. A prerequisite for–
and precursor to–shallow abstraction, a synthetic sys-
tem is thus required to carry, along with the analytically
significant content terms, all of the punctuation and ty-
pographic information needed to reconstruct the emitted
sentence at the end of processing.

Our motivation here was to unify the two divergent
types of processing that evolved in our post-processing
stage, namely, string-based and linguistically-informed
modifications. These previously required tedious re-
alignment, but our synthetic system allows us to aban-
don string-based manipulation of the original source
and freely utilize the richness of the word-based pro-
gramming model during this stage. Final sentences are
output from the word model with little or no loss of
source fidelity. In some cases, output grammaticality
is improved, because typographically invalid source se-
quences cannot be captured by–or represented in–the in-
ternal model.

4 Experiments

After our basic system configuration was established,
further system modifications and development activities
were mainly guided by ROUGE evaluation, with supple-
mental ad-hoc manual review. As mentioned in Section
1, we concluded and documented 140 experiments, and
this agile feedback prompted us to reconsider and re-
configure key aspects of our system. In this section, we
highlight some of the interesting experimental results.

4.1 Query Bagging

Although our content ordering heuristic depends in part
on multiple, independent query sentences selecting their
preferred sentences, quantitative evaluation decisively
favored query term bagging. Our best results are ob-
tained by taking the set union of the terms from all
queries as a single bag, to which the words from the
“title” of each topicset are also added. This bag is fur-
ther subject to entity (Section 4.3) and n-gram boosting
(Section 4.2). Comparing bagged query to our design
baseline, where each query was entered in the A matrix
separately, gave ROUGE-1 and ROUGE-SU4 improve-
ments of 2.8% and 2.5% respectively. This experimen-
tal result essentially renders the top-level of our order-
ing heuristic, which presumes multiple query sentences,
vacuous.



1
c (raw counts)
sqrt(c)
1 + log1.5(c)
1 + log2(c)
1 + log3(c)
1 + log10(c)
1 + log50(c)

Table 1: Dampening functions. ROUGE-2 strongly fa-
vored sqrt(c)

4.2 Query n-Gram Boosting

We observed evaluation gains from boosting, across all
sentences in the topicset, n-grams from the query. In this
technique, we construct a unique identifier from every
possible n-gram in all query sentences independently (n-
grams do not span two or more queries). These identi-
fiers are then added once to each query bag or topicset
sentence in which that n-gram appears. The component
terms of the n-gram are also retained. Any of these iden-
tifiers which do not also appear in somewhere in the top-
icset will be pruned in a later step (Section 3.4), so there
is no harm in liberal experimentation here. After ex-
perimenting with a number of n-gram ranges, such as
2-5-grams and 4-5-grams, our best result here was ob-
tained by boosting only the 5-grams which appeared in
the query.

4.3 Entity Boosting

For all sentences and the query bag, we also boost
Lingpipe-identified entities by a factor of four (x4). As
with n-gram boosting, we generate a unique identifier
for the entity, and add it four times to the bag of terms
for any query or sentence in which it appears. The orig-
inal component term or terms of the entity are also re-
tained. Adding the entity multiple times is equivalent to
manipulating the term dampening for entities relative to
non-entity terms. We evaluated entity boost for factors
of x1 through x5. As shown in Table 2, x4 evaluated
well.

4.4 Term Count Dampening

Because the content vectors in our A matrix represent
sentences, instead of full documents, as they would in
an IR application, we expected that term count damp-
ening would be a relatively unimportant model param-
eter. However, we found ROUGE-2 scores to be es-

ROUGE-1 ROUGE-2 ROUGE-SU4
x1 0.38448 0.08326 0.14082
x2 0.38602 0.08351 0.14130
x3 0.38689 0.08446 0.14217
x4 0.38737 0.08437 0.14232
x5 0.38703 0.08385 0.14168

Table 2: Entity boost results with bagged query, sqrt
dampening, and k = .6d

pecially sensitive to the choice of dampening, and this
measure strongly preferred dampening term counts by
the square root function. Considering this result, it can
be explained by the bigram score being most disrupted
by changes in the treatment of function words, which
are the only words likely to be affected by the choice of
dampening function. We evaluated the eight dampen-
ing functions shown in Table 1, all of which render the
singleton count unchanged. In our final configuration,
square root term count dampening improves ROUGE-
1, ROUGE-2, and ROUGE-SU4 versus raw counts by
0.53%, 0.26%, and 0.42%, respectively.

4.5 Porter Stemming and Stopwords
Although the seminal work on LSI did not investigate
stemming (Deerwester et al., 1990, 15), we found term
stemming to be beneficial. We apply Porter stemming
(Porter, 1980) to all term inputs to our matrix model. It
outperformed our simple baseline stemming by 0.25%,
1.28%, and 0.65% on the respective ROUGE scores. We
also experimented with various combinations of stop-
word application and found that all forms of stopwords
were detrimental to ROUGE-2 and ROUGE-SU4. Com-
pared to our baseline system, which enforced a list of 87
stopwords and 79 contractions, removing the stopword
lists improved the ROUGE scores by -0.16%, 4.61%,
and 1.7%. Having no stopwords was the best configu-
ration we obtained without studying changes to the con-
tents of the two lists.

4.6 Word Count Margin
We implement a margin feature which determines how
close to the word limit a summary will be considered
complete. Naturally, this is a precision-recall trade off,
since our sentence picking algorithm skips over sen-
tences that are too long until the word count and mar-
gin are satisfied, and this results in selecting sentences
with lower cosine scores and possibly detrimental con-
tent value. In our experiments with this parameter, we



sought a precision-recall equilibrium, which was unam-
biguously observed with a margin setting of 12 words.

Related to this feature is a sentence length filter.
In this case, aggressive values quickly reduced our
ROUGE-2 score, so we elected to allow sentences of
any length to be selected.

4.7 Sentence Selection Filtering

Many of our experiments studied post-analysis sentence
rejection criteria. Post-SVD processing is the preferred
stage for categorical rejection, because it allows term
co-occurrence information from the rejected sentences
to still inform the SVD analysis. From the baseline sys-
tem, we experimented with limiting the selection pro-
cess from the SVD rankings to include only sentences
that did not include quotation marks. This improved the
ROUGE 1 F-score from 0.35246 to 0.35802.

As another experiment, we attempted removing all
text outside of the first pair of quotation marks in any
sentence that contained at least one pair of quotation
marks. This process was applied before the SVD stage
in one experiment and after the SVD stage in another
experiment. The pre-SVD version supplied the best re-
sults, improving the ROUGE 1 F-score from 0.35246 to
0.35203.

4.8 Trigram Redundancy

One successful post-processing heuristic was aimed at
preventing the selection of nearly identical or highly
redundant sentences, relative to those that had already
been added to the summary. This heuristic considers
the fraction of distinct trigrams that a candidate sen-
tence shares with every picked sentence in turn, and re-
jects any candidate which exceeds a threshold value. We
tested trigram overlap thresholds of 40%, 50%, 60%,
65%, 70%, and 80%, and found 60% to be optimal. As
an example of the impact of this parameter, this range of
experimentation represents 2.30% change in ROUGE-2,
with a peak at 60-65%.

4.9 Anaphora

One of our last areas of investigation was anaphora res-
olution. We planned to rebuild anaphora chains based
on Lingpipe entity resolution. We quickly determined,
however, that the Lingpipe entity observations were too
sparse and imprecise for automatic processing. Simple
tests illustrated that grammaticality would be reduced
by unsupervised manipulation of the marked entities.

Recall Precision F-score
ROUGE-1 0.39149 0.39143 0.39142
ROUGE-2 0.08590 0.08594 0.08591
ROUGE-SU4 0.14412 0.14412 0.14411

Table 3: DUC 2006 (Development) ROUGE Scores

As part of this investigation, we ran the simple exper-
iment of rejecting all sentences in which the first word
is a pronoun. This was our final experiment, and it im-
proved ROUGE-2 by 0.23% and decreased ROUGE-1
and ROUGE-SU4 insignificantly. Since human gram-
maticality judgement of the summaries was overwhelm-
ingly positive, we retained this heuristic.

5 Evaluation

Evaluation includes a combination of manual and auto-
matic evaluation measures. Manual evaluation primarily
includes manual inspection and ad-hoc intuitive evalua-
tion of the generated summaries’ relevance to the query.

Figure 2 shows the 250-word summary, produced by
our system, of this report. The first and last sentences
are strong selections, which illustrates that our sentence
ordering heuristic, which amounts to presenting the se-
lected sentences in source document order, is effec-
tive. Pronouns without antecedents (“From their web
server...”) are a problem, as are embedded discourse
connectors (“...system is thus required to carry...”) and
references to out-of-context entities (“Section 1”).

Earlier in this project, we used Galvotti-Sebastiani-
Simi (GSS) analysis (Galavotti et al., 2000) to evaluate
the performance of the clustering of conflated SVD di-
mensions. In our final system, clustering is not used and
we no longer attempt to discern interpretations for par-
ticular SVD dimensions, as recommended by most stud-
ies (Schütze, 1992).

Automatic evaluation includes the ROUGE met-
ric. Our non-jackknifed average development ROUGE
scores over the fifty DUC 2006 topicsets are shown in
Table 3. DUC 2007 data was held-out for testing and we
ran our system without modification or tuning on these
45 topicsets, obtaining the ROUGE scores shown in Ta-
ble 4.

Our system was also evaluated in a blind human study
which graded 27 of the 45 DUC 2007 topicsets. For
each topic, a designated assessor evaluated the gram-
maticality, referential clarity, and structural coherence
by assigning individual scores between 1 (“very poor”)



Recall Precision F-score
ROUGE-1 0.40946 0.40501 0.40706
ROUGE-2 0.10042 0.09942 0.09988
ROUGE-SU4 0.15791 0.15620 0.15699

Table 4: DUC 2007 (Held-out) ROUGE Scores

mean median σ rank
Grammaticality 4.75 5 0.43 1
Referential clarity 3.71 4 0.89 3
Structure-coherence 3.25 3 0.97 3

Table 5: DUC 2007 Human Evaluation Scores

and 5 (“very good”). Our results, averaged over the 27
randomly selected topics is shown in table 5. Out of
nine evaluated systems, our system placed first in gram-
maticality. As indicated by the standard deviation of
0.43, inter-annotator agreement on our grammaticality
score was the best, by a wide margin, in the entire hu-
man study. Our referential clarity performance was also
strong in human scoring, perhaps owing to the heuristic
described in Section 4.9, which excludes sentences that
begin with a pronoun. We ranked third in this category,
as we did in structural coherence, which was the lowest
scoring category in the human evaluation program.

6 Summary

Our original query-focused document summarization
system demonstrates the elegant efficacy of linear-
algebraic singular value decomposition for automati-
cally extracting term co-occurrence patterns from text
corpora. Our system produces ROUGE scores that are
competitive with the top DUC 2006 systems and 16th
out of 31 on held-out DUC 2007 data. Development
decisions which favored readability over ROUGE im-
provement were rewarded with high placement in hu-
man evaluation, where our system ranked first in gram-
maticality and third in both referential clarity and struc-
tural coherence. Furthermore, at the end of our ten-week
imposed study period, our core approach appears to have
potential for continued gains.
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