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Abstract 

Constraint-based grammar formalisms such as Head-Driven Phrase Structure Grammar 
(HPSG) model linguistic entities as sets of attribute-value tuples headed by types drawn from a 
connected multiple-inheritance hierarchy. These typed feature structures (TFSes) describe di-
rected graphs, allowing for the application of graph-theoretic analyses. In particular, graph uni-
fication—the computation of the most general structure that is consistent with a set of argu-
ment graphs (if such a structure exists)—can be interpreted as expressing the satisfiability and 
combination functions for the represented linguistic entities, thus providing a principled meth-
od for describing syntactic elaboration. In competent natural language grammars, however, the 
graphs are typically large and numerous, and computational efficiency is a key engineering 
concern. This thesis describes a method for the storage of typed feature structures where each 
TFS comprises a self-contained, contiguous memory allocation with a tabular internal struc-
ture. Also detailed is an efficient unification algorithm for this storage mode. The techniques 
are evaluated in agree, a new managed-execution concurrent unification chart parser which 
supports both syntactic analysis (parsing) and surface realization (generation) within the 
framework of the DELPH-IN (Deep Linguistic Processing with HPSG Initiative) joint refer-
ence formalism. 
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1 Introduction 
Constraint-based linguistic formalisms use hierarchical sets of attribute-value tuples—feature 
structures—to represent linguistic entities. When each such structure is associated with a type 
drawn from a carefully arranged multiple-inheritance hierarchy, and when the value of every 
attribute-value tuple is another such typed feature structure (TFS), an elegant system for de-
claratively modeling natural language arises (Carpenter 1992). 

The suitability of this arrangement is in part due to an equivalent interpretation of feature struc-
tures as directed graphs, which allows graph-theoretical analysis to be applied to the model. In 
particular, graph unification—the computation of the most general graph that preserves all of 
the information in a set of conjoined argument graphs (if such a graph exists)—expresses the 
satisfiability and combination functions for the represented linguistic entities, providing a prin-
cipled method for modeling the elaboration of linguistic structure. 

The unification of directed graphs representing linguistic TFSes is the most costly computa-
tional operation in parsing and generating with unification grammars (Callmeier 2001, 39). 
Processing a simple sentence with a competent natural language grammar can involve hun-
dreds of thousands of unification operations, each operating on graphs of several hundred 
nodes or more. This intense computational sink has motivated considerable research into algo-
rithms for efficient graph unification. 

Unification algorithms require intermediate structure to be built during the course of unifica-
tion. With realistic grammars, unification failures far outnumber successful unifications during 
parsing (Tomabechi 1991), and any structure created up to the point of detecting the failures is 
discarded. Efficiently discarding these unwanted structures has been an important theme in the 
unification literature. Wroblewski (1987) introduced the standard and effective technique of 
using a generation counter to categorically invalidate a large swath of nodes. Tomabechi 
(1991, 1992) improved on this work, describing an algorithm which exhibits no excess copy-
ing; accordingly, this method is used by many modern unification parsers. 

Central to the discarding problem is the fact that the most naïve implementation of a TFS is as 
a set of disjoint nodes, with each node independently allocated from the process heap. Alt-
hough such a per-node implementation affords the advantage that the memory address of each 
node is a globally perfect hash, the lack of an intermediate node-grouping structure compli-
cates the bulk-discarding task. In this thesis, I also observe that node-centric modeling is at 
variance with Carpenter’s seminal formal analysis of feature structures, which accords a cen-
tral role to only the structure’s topmost—or root—node. 

Engineering considerations affect unifier performance. Although a per-node design can be im-
plemented in either a native- or managed-execution environment, the method has increased 
penalties in the latter. In some managed environments, automatic garbage collection introduces 
additional indirection between object references and their underlying memory; these require 
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extra time to traverse each time the object is referenced. Creating a distinct garbage-collected 
object for each of the millions of TFS nodes that occur during parsing or generation can result 
in considerable overhead. 

Nevertheless, managed execution environments remain alluring, owing to the ease of devel-
opment and comprehensive runtime infrastructure they provide. Given the preceding observa-
tions, a managed-code implementation of graph unification may obtain improved performance 
by departing from per-node allocation. This thesis presents a technique for representing the 
complete set of nodes for a given typed feature structure within a single distinct array. Such an 
approach trivializes the discarding problem and reduces the number of garbage collected ob-
jects, allowing a managed-execution system to enter the performance realm of native code. 

To demonstrate that array storage is effective requires that it be challenged with realistic appli-
cation scenarios. The techniques described here are implemented in agree, a new grammar en-
gineering environment and chart analyzer that is introduced as part of this work. The software 
supports a number of specialized features and optimizations described in the TFS parsing liter-
ature, and is compatible with the technical infrastructure and established grammatical practice 
of the DELPH-IN (Deep Linguistic Processing with HPSG Initiative)1 collaborative effort. 
This international consortium is a research community united in pursuing deep natural lan-
guage processing with linguistically-motivated precision computational grammars based on 
Head-Driven Phrase Structure Grammar (HPSG, Pollard and Sag 1994). DELPH-IN compati-
ble declarative grammars permit bidirectional mapping between semantic representations—in 
the format of Minimal Recursion Semantics (MRS, Copestake et al. 2005)—and surface reali-
zations (i.e., sentences).  

The thesis is structured as follows. In Chapter 3, I review typed feature structure formalisms, 
focusing specifically on the DELPH-IN joint reference formalism (Copestake 2002a). The 
chapter continues with a description of per-node TFS storage—describing how it corresponds 
most closely with a graph-theoretic view of the TFS node. I then compare this prevailing 
method with a new method, the main contribution of this thesis. In this method, a synthetic 
allocation domain—essentially a specialized allocation space private to each TFS—is super-
imposed upon the array primitive provided by the runtime environment. The detailed presenta-
tion includes a formal definition, contrasts with the traditional approach, illustrative examples, 
and a discussion of motivating considerations. 

Chapter 4 describes a unification algorithm adapted to array TFS storage. I begin with a review 
of the historical progression of research on algorithms for linguistic TFS unification. Next, I 
present the new unifier, originally inspired by the Tomabechi (1991) method but adapted for 
array storage, enabled for concurrency, and with an important simplification. Specifically, the 
unifier obtains a guarantee not available to previous methods, namely, that the result structure 
                                                   
1 http://www.delph-in.net 
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can always be described by simple (scalar-valued) forwarding between the pre-existing set of 
arity maps which describe the input structures. The operation of the array storage unification 
algorithm is also demonstrated via a sequence of diagrams illustrating the internal states of the 
unifier as it progresses through a simple TFS unification operation.  

In Chapter 5, I evaluate array TFS storage and the array storage unifier, comparing agree to the 
LKB (Copestake 2002b) and PET (Callmeier 2000) parsers, which represent broadly-
delineated managed- and native-execution performance baselines, respectively. In these end-
to-end tests, the new system joins the performance class corresponding to the faster of those 
two systems. In particular, agree’s built-in concurrency and relatively unfettered throughput 
scaling predispose it to the real-time parsing of long, complex sentences. Under this condition, 
evaluation shows parse times for the most complex sentence in the test corpus improved by up 
to 24% versus the comparison system. 

Continuing work is discussed at several points throughout this thesis, and specifically in Sec-
tions 3.4, 4.4 and 5.2. Conclusions can be found in Chapter 6.  
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2 Typed feature structures 
This chapter discusses typed feature structures (TFS) and their application in constraint-based 
grammars. The discussion is divided into three parts. The first part reviews prior work in the 
formal description of TFSes. Special attention is given to elective aspects of the formalism 
which have been adopted within the DELPH-IN research community. More to the point, as-
pects of the formalism—such as disjunction and default constraints—which the consortium’s 
research program eschews, are not reviewed. 

To place the new storage method in context, Section 2.2 introduces some of the engineering 
issues relevant to TFS storage. For example, any representation scheme for TFS nodes must 
arrange the information from each node distinctly with respect to some singleton domain. A 
natural choice for this domain is the memory address space of the process. In this simple 
scheme, each node is sufficiently identified by a pointer, and a TFS can be identified by a 
pointer to one of these nodes, the root node of the TFS. 

The fundamental problem of TFS storage is to encode mixed-arity data in a compact manner 
that permits extremely efficient access. An overview of this feature arity problem—the storage 
and efficient manipulation of typed feature structures used in linguistic modeling—is also giv-
en in Section 2.2. 

The final part of this chapter, Section 2.3, gives a formal description of TFS storage, a special-
ized storage and retrieval abstraction over system memory. This storage mode, a key contribu-
tion of this thesis, is formally described using notation adopted from the relational algebra 
(Codd 1970). 

It is important to state at the start, however, that taking relational algebra as descriptive vehicle 
is in no way meant to suggest that conventional relational databases might present a suitable 
storage mode for linguistic typed feature structures; the relational algebra expressions in Sec-
tion 2.3 are understood to describe memory-resident data structures. Linguistic parsing ex-
presses extreme performance requirements which are generally considered the domain of in-
memory processing, and so locally attached DRAM—in fact specifically uniform-memory ar-
chitecture (UMA)—was the sole storage substrate considered in the context of the method de-
scribed in this thesis. Relational algebra notation was adopted for its facility in describing tabu-
lar data. The notation was freely extended to suit the needs of my presentation, with no con-
cern for the significance of these departures to RDBMS theory or practice, and these depar-
tures—for example, the co-opting of pre-made arity maps from the physical storage layout—
likely have no implementation parallel in RDBMS systems.  

2.1 TFS formalism 
The use of typed feature structures to represent linguistic objects in constraint-based formal-
isms was most influentially summarized by Carpenter (1992), when he established connections 
between—and theoretical foundations for—earlier work by Pereira and Warren (1980), Aït-
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Kaci (1984), Gazdar et al. (1985), Shieber (1984, 1986), and others. Much of the emerging re-
search of this period was closely related to work in logic programming (Aït-Kaci 1986), lattice 
computation (Davey and Priestley 1990), and the Prolog computer language (Colmerauer 
1986). 

In the following sections, I contrast two alternative formal views of typed feature structures. 
Where possible, I present the notation of the more prominent approach, which is that of Car-
penter (1992). As regards notation, one exception—also adopted by Copestake (2002b)—is my 
use of the symbol ⊓, as opposed to ⊔, for unification, the binary operator which gives the 
greatest-lower-bound (GLB) type. As noted by Copestake (ibid., 55), this seems consistent 
with a visual presentation of (inverted) trees which increase their specificity downwards.2 Ac-
cordingly, in this thesis the symbol ⊔ represents the least-upper-bound (LUB) binary operator. 
These operators can also be used as unary prefix operators on sets of types. 

2.1.1 Type hierarchy and feature appropriateness 
Fundamental to typed unification grammars is a single organizing type hierarchy 〈TYPE, ⊑〉, a 
finite meet semilattice, or bounded complete partial order (BCPO) with a single maximal ele-
ment ⊤ ∈ TYPE. That the partial ordering on 〈TYPE, ⊑〉 is complete entails that for any set of 
compatible types 𝑇 ⊆ TYPE, there will be a unique GLB type 𝑡𝑡 = ⊓ 𝑇. This condition is im-
portant because we would like the type unification between any two types 𝑠 ∈ TYPE and 
𝑡𝑡 ∈ TYPE, written as 𝑠 ⊓ 𝑡𝑡, to be deterministic. The type hierarchy can be viewed as a directed 
graph, and in the DELPH-IN joint reference formalism it is taken to be absent of cycles—a 
directed acyclic graph, or DAG. 

 
Figure 1. Type hierarchy for a simple grammar3 

An example of a type hierarchy for a simple grammar is shown in Figure 1. The unique top 
type ⊤ ∈ TYPE subsumes every type in the connected hierarchy. Below this, types are organized 
so that linguistic generalizations are exposed. In this case, type syn subsumes syntactic enti-

                                                   
2 The alternate view is justified in Carpenter (1992, 13). 
3 Except where specifically noted, the grammar examples—modified to suit the concerns of this thesis—are adapted from 
the LKB tutorial grammar ‘g5agr’ (Copestake 2002b); any errors in these were introduced by my alterations. Diagrams 
shown in this thesis are produced by agree/WPF, one of tools developed for this research. 
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ties, cat subsumes categorical distinctions, and agr encodes a singular versus plural distinc-
tion. The list types support lists of values, and string is a special type which subsumes all 
nodes containing textual values.  

Every type in this example hierarchy (except ⊤) has exactly one parent, so this hierarchy does 
not illustrate multiple inheritance. Multiple inheritance is an expressive technique for grammar 
writers to exploit, but often the resulting lattice—as authored—will violate the unique lower 
bound condition between some pair (or pairs) of compatible types.4 Figure 2 shows a fragment 
of a type hierarchy taken from the English Resource Grammar (Flickinger 2000) which illus-
trates the point. The shaded type, which is not included in the grammar as authored, is required 
to ensure deterministic type unification. As a convenience to grammar writers, implemented 
systems automatically compute the BCPO of the multiple-inheritance type hierarchy, a process 
that is briefly described next. 

First, a partial order is 
completed by inserting ex-
tra anonymously-named 
types, as required, to elim-
inate all cases of non-
deterministic type unifica-
tion between consistent 
types. The agree grammar 
engineering environment 
accomplishes this using the 
technique described in Aït-
Kaci (1984). This process 
may introduce redundant 
inheritance relationships 
between types, which 
should be removed for 

tidiness and efficiency, so the next step is to compute the transitive reduction of the resulting 
graph.5 For this step, rather than reducing the lattice from scratch, agree maintains the transi-
tive reduction during and throughout the GLB computation phase. 

                                                   
4 Specifically, the existence of any pair of distinct types for which there are multiple types which are compatible with 
both in the pair—yet themselves manifest no subsumption relationship—implies that the partial order of the lattice is 
incomplete. The undesirable result in the operation of the grammar is that the type unification binary operator is non-
deterministic. 
5 The main reason for computing an optimal transitive reduction—the removal of redundant edges—is that a later step in 
preparing the grammar is to unify each type with the constraints on its parents, a process known as expanding the gram-
mar. An optimal transitive reduction ensures that the minimum number of unifications will be performed during expan-
sion. Other than this—and for the convenience of visualizing the type hierarchy with a minimum number of connecting 
lines—there is no operational use for the reduced graph. 

 
Figure 2 Fragment of the ERG type hierarchy showing a greatest lower bound 
(GLB) type which was automatically inserted so that the type unification result 
0-1-list ⨅ olist is deterministic. Absent glbtype1, the result would be indetermi-
nate, namely, between onull and 1-ocons. 



7 
 

The formalism further extends the type system by introducing zero or more named features 
𝑓𝑓 ∈ FEAT for each type in the hierarchy. In the variant presented here (and as adopted by 
DELPH-IN), each feature must be introduced by exactly one type, 𝑡𝑡 = Intro(𝑓𝑓), 𝑡𝑡 ∈ TYPE. By 
definition, the feature becomes appropriate for that type and all the types it subsumes—that is, 
all of the types which are descendants of 𝑡𝑡 in the type hierarchy. The appropriateness function 
Approp(𝑓𝑓, 𝑡𝑡) is thus defined as the unique partial function6 in FEAT × TYPE that globally satis-
fies (2.1): 

 ∀
𝑓 
∈

 FEAT
 ∀
𝑡 
∈

 TYPE

⨆𝑓𝑓 
Approp(𝑓,𝑡)↓

 (2.1) 

The grammar’s set of types and features can be arbitrarily arranged to describe constrained en-
tities. To do so, they are arranged in independent hierarchical structures called typed feature 
structures (TFS), which are formally described in the next section, Section 2.1.2. An example 
is shown in Figure 3, where the type hierarchy from Figure 1 has been extended by describing 

a canonical constraint for some of 
the types. Canonical constraints 
are authored as TFSes which are 
headed by the respective type, 
and which optionally list a set of 
named properties—the features—
which are each paired with a val-
ue. Each value in these feature-
value pairs refers to further sub-
structure, expressed in the form of 
a nested TFS.7 The type heading 
this substructure may have no 
appropriate features, which sig-
nals a leaf in the arbitrarily nested 
structure. A feature is introduced 
by exactly one type in 〈TYPE, ⊑〉, 

                                                   
6 Regarding notation for partial functions, the downward arrow suffix 𝑓𝑓(𝑔)↓ defines a total predicate which indicates 
whether partial function 𝑓𝑓 is defined for argument 𝑔. This form for defining the appropriateness function is adopted from 
Carpenter (1992).  
7 In this thesis, the term “TFS” will generally not be used to refer to the organization of TFS substructure. For the purpos-
es of this presentation, the fact that typed feature structures are structurally recursive is secondary to the engineering con-
siderations related to the lifecycle of top-level structures. Therefore, unless otherwise indicated, TFS refers only to an 
entire structure whose topmost node is not referenced from within any other TFS (excluding for purposes of a non-
linguistic structure sharing optimization). This definition includes all of the structures which comprise a loaded grammar, 
structures created via unification, parse chart edges (including partial rule applications), etc. To highlight this point, con-
sider rule-daughter unification: the mother and daughter are each TFSes, but the point within the mother at which the 
daughter is unified will not be called a “TFS,” (because it has outer structure relative to this internal node); this use of 
nomenclature is chosen because it correctly predicts the additional complication these types of unifications present for 
monolithically stored structures. 

 
Figure 3 The type hierarchy from Figure 1 is extended by describing 
canonical constraints for each types. These typed feature structures (TFS) 
optionally pair a set of features with additional constraints. Feature 
names are shown with black text when they are introduced by their node 
type, or gray text if they are inherited from a parent type. 
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an association deduced from context. For each type, the features it introduces plus the features 
inherited from its parent type (or types) form its set of appropriate features. 

Completing the definition of the grammar itself, in constraint-based grammars, the linguistic 
entities corresponding to the entity classes in the traditional formal grammar tuple 𝐺 =
〈𝑁, Σ,𝑅, 𝑆〉—viz., intermediate syntactic fragments, the lexicon, the rules, and the set of root 
symbols—are all represented as typed feature structures. 

The set of constraints explicitly written for inclusion in the grammar becomes a reference set 
which, taken as a whole, comprises the intended model of linguistic structure. Constraints can 
be composed in infinite variation under the operation of TFS unification, which serves as the 
dual satisfiability and monotonic composition functions in unification grammars. TFS unifica-
tion produces a new TFS (if such a structure is possible), namely, the necessarily unique most 
general structure which jointly satisfies all of the constraints in the argument structures; this is 
the topic of Chapter 4. 

Formally, the solution to the grammar’s system of simultaneous constraints under unification is 
the (infinite) set of permissible linguistic structures. In these terms, the ambition of a grammar 
is to set forth the most succinct set of canonical feature structures which permit, via any se-
quence of successful unifications, only and exactly those structures which are judged to be 
grammatical. In practice, exploration of this vast solution space is guided via specialized unifi-
cation-based chart parsers. The process is computationally intensive; a parser may produce tens 
of thousands of transient structures during the course of analyzing a sentence. 

 
Figure 4. Every linguistic entity in a unification grammar is a TFS. Here, the TFS representing the lexical entry for the 
word “these” is unified with the first of two surface positions in a rule which forms a noun phrase from a determiner and 
a noun. The result reflects an incomplete rule application. Note that the type of the NUM feature—which was ‘agr’ in the 
rule—has become more constrained (‘pl’) in the result structure, reflecting that only plural nouns are eligible to complete 
this parse hypothesis.  

An example of how unification composes new structures is shown in Figure 4. In this case, a 
lexical entry representing the plural determiner “these” is unified with (a subsection of) a rule 
which forms a noun phrase from a determiner and a noun. The rule TFS belongs to a certain 
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class of structure that I refer to as mother-daughter TFSes; these make available one or more 
internal substructure nodes (‘ARGS’ or daughter positions) at which unification operations can 
be initiated. In this vein, Figure 4 shows a mother-daughter unification, which unifies the root 
node of one TFS with one of the daughter position in a mother-daughter TFS. If successful, the 
operation yields a result structure whose root coincides with the mother TFS.  

The typed feature structure defines the manner in which the types and features defined by a 
grammar are arranged in order to describe arbitrarily constrained linguistic entities. The ar-
rangement is simple: a typed feature structure consists of exactly one type 𝑡𝑡 ∈ TYPE and a set of 
attribute-value pairs which pair each feature in the set 

 ⋃ 𝑓𝑓
𝑓 ∈ FEAT, 𝑓:Approp(𝑓,𝑡)↓

 (2.2) 

—the attributes—with another “typed feature structure”—the value. Although the elegance of 
this informally stated definition is compelling, it is not the basis for the most widely cited for-
mal treatment, that of Carpenter (1992). In Sections 2.1.2 and 2.1.3, I compare approaches 
evolved from (2.2) with the Carpenter’s canonical formalism, hereafter the functional formal-
ism.  

2.1.2 Functional formalism  
This section reviews the analysis of typed feature structures advanced by Carpenter (1992). To 
begin, it is convenient to have a shorthand notation for feature paths within a TFS. These defi-
nitions make use of the list-concatenation operator, ⊕. 

PATH = FEAT∗ the set of all paths (2.3) 

𝜖 the empty path (2.4) 

𝛼 ∈ PATH a path8 (2.5) 

𝛼 = 𝜖 ⨁ 𝛼 traversal of the empty path is vacuous (2.6) 

𝛼𝑖 = (𝑓𝑓0,𝑓𝑓1, … ,𝑓𝑓𝑛𝑖) A path is an ordered sequence of features (2.7) 

𝑓𝑓𝛼 = ( 𝑓𝑓 ) ⨁ 𝛼 path extension (2.8) 

A typed feature structure instance 𝐹 is defined by Carpenter as follows. 

𝐹 = 〈𝑄, 𝑞,̅ 𝜃,𝛿〉 typed feature structure 𝐹 is a 4-tuple of: (2.9) 

𝑄: 𝑞 ̅ ⊑ 𝑞 a finite set of nodes subsumed by a root node; (2.10) 

𝑞  ̅ ∈ 𝑄 a distinguished root node; (2.11) 

𝜃:𝑄 → TYPE node typing function (total); (2.12) 

𝛿: 𝑄 × FEAT → 𝑄 feature value function (partial). (2.13) 

                                                   
8 To avoid a conflict with the relational algebra projection operator, which is used later in this thesis, paths are designated 
by 𝛼, rather than 𝜋, as in Carpenter’s presentation 
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The set of all feature structures is given by ℱ. From a graph perspective, the unappealing as-
pect of this definition is that the two properties of a node—its type and its feature-value 
pairs—are bifurcated between 𝜃 and 𝛿. The following convenience extensions allow nodes to 
be identified by their distinct paths from the root node. 

𝛿:𝑄 × PATH → 𝑄 the feature value partial function can apply to paths (2.14) 

𝛿(𝑞, 𝜖) = 𝑞 traversing the empty path from any node is vacuous (2.15) 

𝛿(𝑞,𝑓𝑓𝛼) =  𝛿(𝛿(𝑓𝑓,𝑞),𝛼) path traversal can be expressed with recursion (2.16) 

By the end of the 1990s, this formal approach to typed feature structures had become HPSG 
canon, but an alternative formulation of typed feature structures—as directed graphs—was also 
well studied. First investigated in separate work by Johnson (1987), Smolka (1989) and King 
(1989), the graph idea was later expanded by King, who lobbied for its official adoption within 
the then-emergent HPSG school (King 1994). 

As for Carpenter’s views, he methodically dismisses the graph approach in his seminal book 
(Carpenter 1992, discussed further in Section 2.1.4). In time, it was his functional approach 
that was endorsed by Pollard and Sag (ibid., 1). Also influential was the adoption of this ap-
proach by Copestake (2002b) in her book which documents the LKB grammar engineering 
tool. 

Notwithstanding this, the graph interpretation of the TFS is relevant to the work presented in 
this thesis, particularly as a fairly literal blueprint of the predominant engineering practice for 
DAG implementations. The next section gives a graphical formulation of the typed feature 
structure. Because the fundamental conception is straightforward, my presentation does not 
recall the detailed formal analyses of Smolka and his contemporaries. Instead, I introduce a 
new formulation which is intended to focus attention on issues relevant to the main thesis top-
ics which follow. 

2.1.3 DAG interpretation 
As noted at the beginning of Section 2.1.1, the type hierarchy 〈TYPE, ⊑〉 is equivalently a di-
rected acyclic graph (DAG), where each type is a node, and the transitive closure of the graph 
exactly expresses the grammar’s type unification partial function. Unrelated to this particular 
graph equivalence, DAGs have further utility in the modeling of typed feature structures. Spe-
cifically, the extension of 〈TYPE, ⊑〉 with features 𝑓𝑓 ∈ FEAT means that each TFS also has an 
equivalent DAG representation. In this correspondence, the graph edges are labeled with fea-
tures and they represent not an inheritance relationship expressing linguistic generalization, but 
rather the topological structure of the typed feature structure. Figure 5 illustrates this interpre-
tation. 

The figure also illustrates how the backbone of a traditional context-free grammar (CFG) is 
encoded in TFS grammars. A TFS can contain list-valued values by employing the ‘cons cell’ 
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mechanism (adopted from the LISP programming language), and the terminals or pre-terminals 
comprising the right side of a CFG rule can then be encoded as a list of sub-structural TFS po-
sitions that correspond to proximal positions in the outermost input structure.9 

 

 

𝑁𝑃 → 𝐷𝐸𝑇 𝑁 
Figure 5. Typed feature structures can be represented 
as directed acyclic graphs where the types are the nodes 
and the features are connecting “edges.”  At right is the 
DAG representation of the grammar rule depicted (with 
a conventional linguistic diagram) above. Note that the 
reentrancy depicted with green boxes in the latter mani-
fests in the graph as multiple DAG edges pointing to 
the same node. 

I refer to any scheme in which TFS substructures (“nodes”) are conceived as TFSes—the view 
carefully avoided by Carpenter—as a graphical formalism. Engineering implementations 
which fundamentally parallel the graph treatment are called per-node implementations. Further 
remarks on the contrast with the functional formalism are presented in Section 2.1.4. In con-
trast, this thesis proposes a method that fundamentally diverges from per-node modeling. Alt-
hough the array storage scheme proposed in this thesis does not instead embrace the functional 
formalism (certain of its aspects remain impractical for direct implementation), in at least one 
regard, the new work does hew more closely to Carpenter’s traditional formulation. Specifical-
ly, it incorporates a requirement that the root node of a TFS—viz., the topmost linguistically 
relevant structure—be inherently distinguished from its substructure. 

Conceptually, the graph view of the TFS is simple to express. Extending (2.2), in the graph 
treatment, a node 𝑞 ∈ 𝑄 is defined as a 2-tuple of a type and a feature-node pairing for each 
distinct feature appropriate to the type: 

 𝑞𝑖 = 〈𝑡𝑡𝑖 ∈ TYPE, ⋃ 〈𝑓𝑓, 𝑞𝑗 ∈ 𝑄〉
𝑓 ∈ FEAT, Approp(𝑓,𝑡𝑖)↓

〉 (2.17) 

                                                   
9 For parsing, the proximity condition is adjacency (of lexemes) in the surface string (“sentence”). In the case of genera-
tion, the list in question is the set of elementary predications (EPs) in the semantics built thus far, and the proximity con-
dition is mutual-exclusion of EPs from the input semantics with this (unordered) set. Other than operating on a proximity 
condition which is abstracted in this way, the agree chart analyzer has little parse vs. generate distinction. 
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In this formulation, 𝑞𝑗 is taken to be a reference to another node in 𝑄, such that more than one 
node in 𝑄 may include it amongst its feature values. The fact that nodes are modeled in the no-
tational domain in this description makes it tedious to describe specific structures with this 
type of notation. This issue, a reduced degree of axiomatization (as compared to Carpenter’s 
approach) will be addressed further in the next section. 

Note that this recursive definition does not distinguish the modeling of a top-level TFS—used 
in linguistic modeling—from the modeling of its substructure. Although this characteristic—
that nodes and substructure are equally described by (2.17)–does not provide an obvious or 
inherent way to differentiate top-level linguistic entities from their contents, the simplicity of 
the conception is nevertheless appealing, as (2.17) alone can be taken as a generally sufficient 
description of the essence of typed feature structures.10 

This same characteristic—a purely uniform treatment of sub-structural and root TFS nodes—
also facilitates an effective engineering optimization which existing DELPH-IN parsers ex-
ploit, and which is not available, in an immediately obvious way, to the new storage method 
described in this thesis. At issue is the sharing of identical substructure between disjoint TFSes 
in order to reduce the storage cost for large numbers of TFSes. The technique, known as struc-
ture sharing, is examined in Section 2.2.2. Observations regarding structure sharing with re-
spect to array storage can be found at the end of that section, and also on page 52, in the dis-
cussion of the array storage example.  

2.1.4 Contrasting the functional and graph approaches 
I now briefly contrast the two dissimilar conceptions of the TFS summarized in the preceding 
sections. Given the elegance and simplicity of the graph notion—that is, thinking of each TFS 
node as having a list of tuples of the form 〈𝑓𝑓 ∈ FEAT,𝑇𝐹𝑆〉—this section considers why the 
formalism that appears more cumbersome was adopted, and why Carpenter favored it. 

Endorsement by Pollard and Sag signaled a degree of acceptance for Carpenter’s formalism 
that the graph formalism was not able to attract in the linguistic community. One reason that 
this is surprising is the fact that, as an engineering abstraction, the functional formalism is not 
nearly as compelling—a point mentioned in Sections 2.1.2 and 2.3—and that de facto practice 
in computer engineering encourages a view closer to (2.17), the node-centric graphical concep-
tion. Best practices in object-oriented programming gravitate towards simple models in which 
like behaviors and properties are identified and conflated. Indeed, the internal representation of 
typed feature structures found in existing unification parsers, such as PET and the LKB, most 
closely corresponds to the graph abstraction described in this section. 

To a certain degree, the elegance of the recursive TFS definition hides co-identity relationships 
between coreferenced nodes by promoting them to the domain of notation. For example, in 
                                                   
10 A valid criticism, however, is that while the formulation succinctly and elegantly describes all possible TFSes, it is 
awkward for describing some particular TFS. This point is addressed in more detail in Section 2.1.4. 
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(2.17), nodes 𝑞𝑗 and 𝑞𝑘 are coreferenced if and only if 𝑗 = 𝑘. Although fundamentally ade-
quate as a description, (2.17) resists further analysis. Indeed, ‘unrolling’ the recursive defini-
tion by manually writing down the graphical description of some specific TFS would be a tedi-
ous process with no reusable result. Carpenter’s axiomatized approach to TFS analysis may 
have garnered wider acceptance because it avoids this problem. Functionally abstracting over 
TFS topology relegates unruly structural variation to the domain of homogenous modeled da-
ta—as opposed to instances of lengthy, opaque singleton formulae—more readily enabling fur-
ther analysis of the structures’ theoretical properties. 

It is not necessary to speculate about Carpenter’s demurral of the recursive view. As mentioned 
in Section 2.1.2, Carpenter knew of the graph treatment, and carefully promoted his method by 
pointing out a subtle case where the two approaches yield inconsistent analyses, his functional 
analysis giving what he characterized as a more robust interpretation. The divergent case (Car-
penter 1992, 39) involves feature structures containing cycles. Although structures containing 
cycles are not permitted in the DELPH-IN formalism today, other variants which permit self-
referential structures were receiving healthy research attention in the early 1990s. One use for 
cyclical structures cited by Carpenter is in a feature structure which models the liar’s paradox 
sentence.  

Specifically, Carpenter observes that co-identifying entire sub-structures, as opposed to co-
identifying only individual nodes, as his functional formalism does, complicates the determin-
istic processing of structures containing cycles. This is because coreferencing in a graph neces-
sarily creates the appearance of identical substructure at each reentrancy. Carpenter interprets 
this result as meaning that cyclical structures introduce an infinitude of nodes. Conversely, in 
his functional formalism, the feature value function δ entails that each node in the feature 
structure corresponds to exactly one unique substructure, even in the face of cyclic structures, 
and despite the structure having an infinite number of paths.  

The preceding sections reviewed two approaches to the formal description of TFSes. To com-
plete the discussion of established theoretical practices related to typed feature structures, the 
next section discusses the TFS well-formedness requirement that many comprehensive formal-
isms, such as the DELPH-IN joint reference formalism, superimpose upon the fundamental 
TFS formal entity. 

2.1.5 Well-formedness 
As discussed in the section 2.1.1, the operational content of a unification grammar is a set of 
typed feature structures, each belonging to a predefined class of grammar machinery. Relevant 
classes include grammar rules, start symbols (root conditions), morphological or other lexical 
rules, lexical entries, and so on. 

In the DELPH-IN joint reference formalism, typed feature structures are always well-formed, 
which means that no part of any TFS may be incompatible with any canonical (authored) con-
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straint on the types that it references. As part of the process of loading of a grammar, all of its 
feature structures are made well-formed. In this process—which is called expanding the 
grammar—the TFS representing the authored constraint for each type is unified with the con-
straint on its parent types (that is, with each parent’s own expanded TFS). Additionally, the 
internal nodes of each TFS are unified with the expanded TFS for their type.11 

An example illustrating the well-formedness require-
ment is shown in Figure 6. Although neither 𝑡𝑡1 nor 𝑡𝑡2 
constrain the type at path 𝐹.𝐹 in their nodes of type 𝑏 
and 𝑐, respectively, their unification results in a struc-
ture, 𝑡𝑡3, containing a node of type 𝑑. Because elsewhere 
𝑑 is constrained such that feature 𝐹 must be consistent 
with 𝑔, the well-formedness requirement introduces 𝑔 
into 𝑡𝑡3. 

Because the unifier emits new TFSes during the course 
of grammar operation, it becomes responsible for main-
taining the well-formedness condition. Accordingly, 
well-formedness will be revisited in Section 4.1, where 
the issue is discussed in the context of unification. 

The remainder of this chapter contrasts two engineering 
approaches to TFS representation in implemented sys-
tems: the standard technique and the new method inves-
tigated in this thesis. Of the descriptive forms presented 

so far—the functional and the graphical—both engineering implementations parallel more 
closely the graphical treatment, but in at least one respect—its incorporation of inherent dis-
tinction of the root node of the TFS—the new method evokes aspects of Carpenter’s more 
widely accepted formal treatment. 

2.2 Design considerations for TFS storage 
This section reviews important design considerations in TFS storage. Most such issues have 
been studied in the context of TFS unification algorithms. A chronological review of the pub-
lished literature on the subject can be found in Section 4.2, so the objective of this section is to 
describe the significant themes which motivate the design of array TFS storage, the description 
of which immediately follows this material. 

                                                   
11 For this, I point out an optimization which is not noted in the DELPH-IN literature. The latter describes “each node 
[being unified] with the [expanded] constraint of the type on each node” (Copestake 1993, 2002b). However, as a TFS is 
expanded, many of its nodes become collaterally well-formed as a result of unifications with other well-formed TFSes. 
The agree unifier treats the lack of well-formedness as a sort of contagion, introducing the condition only on the root 
node of each un-expanded definition. As unification proceeds, nodes are trivially ‘inoculated’ or ‘infected,’ as appropri-
ate. Combined with the technique of using a single unifier call to simultaneously perform all of the required parent type 
unifications, this reduces the number of well-formedness unifications needed for grammar expansion. 

 
Figure 6. Because unifying compatible types 
𝒃 and 𝒄 results in a distinct type (𝒅), the unifi-
cation of 𝒕𝟏 and 𝒕𝟐 will introduce an addition-
al unification with the constraint on 𝒅, thus 
introducing 𝒈 to 𝒕𝟑. Note also from this ex-
ample that a path can use the same feature—
viz. 𝑭𝑭.𝑭𝑭—more than once without violating 
(2.1), nor necessarily introducing a cycle. 
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2.2.1 Node allocation and discarding 
Per-node TFS representations are characterized by the direct, individual accessibility of all 
TFS nodes with respect to some singleton addressing domain. Such a design can be used with-
in the native execution environment of a C/C++ program—where node pointers correspond 
directly to virtual memory locations—or in the managed environment of a LISP, Java, or C# 
program—which typically insert a level of indirection between object references and their vir-
tual memory locations. The PET parser (Callmeier 2000) is an example of a native-code par-
ser, where nodes are accessed directly with native pointers, and the LKB system (Copestake 
2002b) is an example of a managed a managed-code parser, where nodes are accessed indirect-
ly via handles to garbage-collected memory. 

In general, because the feature-value pairs represent mixed-arity data, efficient storage is a 
challenge. This section introduces some of the concerns, but full examination of this topic is 
the subject of Section 2.2.3. The node object in a per-node design can refer to its list of feature-
value pairs by containment, by reference, or by polymorphism. In a containment design, the 
list of attribute-value pairs is entirely stored directly within the node, so each node is a relative-
ly self-contained, variably-sized storage entity. In native programs, arbitrarily-sized memory 
blocks can be allocated for any purpose, and the layout imposed on this memory is entirely 
defined by the application.  

Alternatively, each node is allocated with a fixed size, and thus refers to its list of attribute-
value pairs, which are stored separately elsewhere, by pointer or reference. Managed environ-
ments provide assorted lists, dictionaries, or maps for this purpose; they can be included by 
reference or by inheritance. In the former case, a reference to the list or map is stored in the 
user-defined object, rendering the size of the latter again fixed. For the latter case, list object 
instances are extended into user-defined objects by selecting the list object type as a base type 
for the user-defined object type. A benefit of the latter technique is that, depending on the de-
tails of the runtime environment, instantiating the derived object may result in just one, rather 
than two, heap allocations. 

Section 2.1.4 noted that the graph interpretation of a TFS corresponds more closely to a per-
node TFS representation, because just as node coreferencing is implicit in the memory location 
of a node in per-node implementations, node coreferencing is implicit in the notational varia-
bles of the graph interpretation. Furthermore, engineered systems generally exhibit no corre-
lates to the functions which comprise an axiomatized form. This is all to say that directed 
graphs seem to naturally model the most straightforward computer-internal representation for 
TFSes. Such a design adheres to the object-oriented programming tenets of encapsulation and 
proper abstraction: defining entities that reify the most deterministic local relationships. Since 
types exhibit a one-to-many relationship with their features, they are reified over features: a 
node is an entity which associates that type with a set of feature-value tuples by containment, 
proximity, or distinct reference. Reifying features, on the other hand, is a weaker design be-
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cause—feature appropriateness being inherited via the type hierarchy—features are lesser pre-
dictors of the range of types with which they may be associated. 

The overhead of per-node allocation is minimal in native environments. In a naïve approach, 
each node is independently allocated from the global process address space. Allocations, once 
granted, are permanently fixed until discarded, so administrative block headers, if present, are 
simple—and in the simplest case, no such headers are needed. However, few sophisticated sys-
tems use a general-purpose allocator for TFS node storage. One problem is that freeing these 
allocations can result in undesirable fragmentation of the space available for future allocations 
and this slows subsequent allocations because longer lists of free blocks must be traversed be-
fore a block of adequate size is found. Secondly, when a TFS’s constituent nodes are dispersed 
across memory, each must be individually located and freed. Structurally traversing a TFSes 
just to discover—and then discard—its nodes is untenable. Recent experiments with agree 
show this to be less efficient than a sequential scan of up to 40% more memory, a result ob-
served in unifier node-counting experiments which will be discussed in Section 4.4.10. 

To avoid these problems, sophisticated modern parsers (such as PET) pool the node allocations 
related to a single TFS into privately-managed high-performance heaps which can be discarded 
as a whole. This basic characteristic—monolithic encapsulation to facilitate bulk discarding—
is incorporated in the array TFS storage design as well, although the details are quite different 
(and these details ultimately disqualify array TFS storage from being categorized as “per-
node” storage). In short, issues that threaten to hamper naïve graph abstractions are straight-
forwardly mitigated and the per-node abstraction remains aligned with sound, well-understood 
engineering practice. 

In managed execution environments, individual allocations entail a different assortment of 
penalties. Each allocation may include one or more small administrative blocks which are not 
co-located with the block itself. The actual value of the reference returned to the application 
may point to such a control item, and this indirection allows the environment to relocate the 
actual allocation, if necessary. Relocations occur during garbage collection cycles, which allow 
free spaces to be re-consolidated, eliminating fragmentation. Unamortized for garbage collec-
tion, allocation in a managed environment is faster than with the default (general-purpose) pro-
cess heap in a typical native program; there is only a single pointer to the beginning of free 
space, which is simply incremented by the required allocation size.12 There is no free list to 
traverse (modulo obscure internal details of the runtime environment). On the other hand, 
when garbage collection is triggered, a lengthy delay can occur. 

A potential disadvantage of per-node storage is that nodes from distinct TFSes may be ran-
domly interspersed across the process heap, an effect which is more pronounced as the heap 

                                                   
12 In fact, this type of speedy allocation is how sophisticated native-code parsers such as PET implement their private 
domain-aware heaps. 
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becomes fragmented. Cache locality may be hindered when a processor has to range across 
large swaths of memory in order to retrieve co-relevant data. Managed heaps are less prone to 
fragmentation, but are subject to a different penalty. In managed per-node designs, there is no 
way to inform the garbage collection system that the lifetimes of the objects which comprise a 
TFS are bound together, so the garbage collector expends considerable effort ascertaining the 
set of objects that are eligible for disposal. 

2.2.2 Structure sharing 
An advantage of any per-node system is that the address of any node is a perfect hash of the 
node’s identity. Because TFS membership is not a property of a node’s memory address, shar-
ing substructures between disjoint TFSes is trivially implemented by simply sharing a refer-
ence to the same node. The discussion here focuses not on linguistically-motivated reentrancy, 
but rather on the sharing, for efficiency reasons, of any physical structure that happens to be 
identical. 

Ignoring the issue of finding permissible structure-sharing candidates, when the substructure 
nodes of every TFS are openly accessible in non-movable process memory, it is trivial for any 
portion of one TFS to co-opt the substructure of another by simply pointing into it. Structure-
sharing schemes appropriate to TFS parsing have been well studied (Malouf et al. 2000, van 
Lohuizen 2001). 

However, this same property—the indifference, or blitheness, of a node to the top-level struc-
ture or structures to which it belongs—creates problems as well. Most significantly, distin-
guishing nodes only on the basis of their physical—as opposed to logical—identity places a 
severe limit on the sharing of substructures between top-level graphs. In a problem known as 
spurious structure sharing (or, in theorem proving, the renaming problem, [Pereira 1985]), co-
referenced nodes become incorrectly conflated if the same sub-structure appears more than 
once amongst all the participants in a unification operation (Malouf et al. 2000). For many uni-
fication algorithms, this problem means that any structures that are part of the grammar, or 
which contain internal coreferencing,13 must be banned from structure sharing. As an obvi-
ous—but expensive—solution to this problem, any time it is necessary to introduce distinct 
instances of a structure at multiple points within the same TFS, the structure can be copied be-
forehand. 

The structure sharing limitations associated with TFS-blithe node storage can be mitigated by 
explicitly tracking each node’s TFS memberships—within the TFS, within the node, or both—
and ensuring that the unifier always distinguishes nodes not just on their memory addresses, 
but on a joint 〈𝑇𝐹𝑆, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠〉 tuple (van Lohuizen 2001). This enhancement comes naturally 
to concurrent unifier implementations, which are prohibited from using methods that rely on 

                                                   
13 A structure 𝐺 that contain reentrancies 𝛿(𝑞̅,𝛼𝑖) = 𝛿(𝑞̅,𝛼𝑗) is excluded because if such a structure is introduced into 
result graph 𝑅 at node 𝑟𝑖 and then again at node 𝑟𝑗, nodes 𝛿(𝑟𝑖 ,𝛼𝑖) and 𝛿(𝑟𝑗 ,𝛼𝑖) may become incorrectly conflated. 
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per-node in situ scratch fields, since these would be contended resources. Schemes which as-
sign a detached set of slots to the argument TFSes are, as a bonus, likely to resolve the node-
identity problem mentioned here. In fact, van Lohuizen notes exactly this, and the restrictions 
on structure sharing described in Malouf et al. (2000) are lifted in his concurrent parser. For 
the same reason, agree inherently permits unrestricted sharing of all structures in its unifier, 
regardless of whether they are grammar-canonical, contain coreferencing, or are multiply-
introduced during a given unification operation (a moot point since agree currently lacks a so-
phisticated structure sharing implementation). 

Any method for determining a node’s-TFS membership, such as the one just described, may 
facilitate the wholesale discarding of top-level structures as well. This issue was discussed in 
the previous section. But in general, the ease of structure sharing is inversely related to the so-
phistication of the scheme used to discard unwanted structures. Short of per-node reference 
counting, ad-hoc sharing creates dependencies on the co-opted structures which should inhibit 
their disposal. On the other hand, bulk disposal of a swath of related allocations is facilitated 
by creating specialized heaps which obtain efficiency by coarsely disregarding this type of de-
tail. This discarding problem is a pervasive theme in high-performance unification parsing and 
it will be discussed again in Chapter 4. For this section on design considerations for TFS stor-
age, the important note is that, although they trivialize the discarding problem, storage schemes 
which strongly and independently encapsulate each TFSes’ substructure—or worse, make 
those structures inaccessible—complicate their ability to share arbitrarily between TFSes. Both 
of these conditions apply to the method contributed by this thesis, and therefore arbitrary struc-
ture sharing in a regime of TFSes represented as fully encapsulated, system-managed (mova-
ble) arrays is an area for future research. 

Having said this, agree does currently implement a simple form of structure sharing. When 
loading the grammar, the system automatically identifies top-level grammar TFSes which can 
be treated as functionally identical by the unifier, perhaps via specialized feature restriction—
or by substitution of just the distinguished type value on their root node. These manipulations 
are simple for agree to detect and deploy. As an example, in the English Resource Grammar14 
(Flickinger 2000), the feature ‘RNAME’ is used for diagnostic purposes but does not contrib-
ute to linguistic analysis. Restricting this feature renders a number of grammar entries func-
tionally identical, modulo their root type. Similar techniques allow agree to share (at least 
once) 653 of the 8450 array storage relations (which each represent an entire TFS body, but not 
its root out-tuple) for the ERG’s type hierarchy. 

2.2.3 The feature arity problem 
The fundamental problem of TFS storage is to efficiently encode mixed-arity data. A TFS typ-
ically consists of several hundred nodes, and the number of attribute-value pairs stored in each 
                                                   
14 Unless otherwise noted, this research is based on SVN trunk revision 10342 (November 29, 2011) of the English Re-
source Grammar. 
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of these nodes—and the specific set of attribute identities they exploit—are variable. For com-
plex grammars, the number of pairs associated with each node ranges from zero to over a doz-
en. Attributes in these pairs are drawn from a set of a couple hundred, but they appear in nodes 
in a small number of fixed combinations. For example, the English Resource Grammar uses 
206 features which appear in only 120 distinct configurations, ranging in size from zero to 
fourteen features. 

In many TFS formalisms, including the DELPH-IN joint reference formalism, each feature 
must be introduced by exactly one type in the type hierarchy. The feature becomes appropriate 
for this type and all of its descendants, a condition which is an invariant property of the gram-
mar. In a naïve per-node implementation, details of this invariant aspect of the grammar are 
implicitly proliferated in the list of feature-value tuples stored with every node, since each val-
ue in the list must indicate the feature it constrains. Contained in each node as such, the disper-
sal of this redundant information increases with the total number of nodes in the TFS. In other 
words, the mere appearance of a feature 𝑓𝑓 amongst the node’s feature-value tuples asserts an 
appropriateness condition that could have been deduced from the type hierarchy alone. 

Callmeier (2000) examines this issue and evaluates alternative methods of feature encoding 
within the per-node framework. In particular, he notes that, when unifying feature structures, 
any type unification that results in a type with additional appropriate features may require fea-
tures in the input nodes to be rearranged, to ensure a position for each appropriate feature of 
the type of the output node, a process he calls coercion. This penalty can be avoided by pre-
assigning a unique slot for each feature in every node. As conflicting desiderata, coercion—a 
time factor—competes with node size—a space factor—in the per-node design. Callmeier 
studies alternative systems for pre-computing feature layouts for each node type. These fixed-
arity schemes try to minimize the number of coercions by guaranteeing that each feature al-
ways has the same slot in any type. The obvious and naïve implementation wastefully allocates 
slots in every TFS, some of which will never be used. An improved scheme pre-computes a 
partitioning of types into sets that do not interfere with each other, and re-uses a smaller num-
ber of feature slots on this basis. A third plan, the most space-efficient, gives each type its own 
feature layout, while attempting to align feature configurations where possible. A similar 
scheme (adapted for the array storage method described in this thesis) is described in Section 
3.4. Callmeier’s evaluation shows that, although the third approach is the best-performing 
fixed-arity scheme, it does not significantly outperform the naïve method, where each feature-
value tuple explicitly carries a (numerical) feature identifier. 

The fixed-arity schemes evaluated by Callmeier are attempts to address a fundamental problem 
with the intuitive type-centric TFS representation, namely, that it fails to fully capitalize on the 
invariant configuration of the grammar’s directed type hierarchy. As noted by Carroll (1993, 
40), systems can be designed to take advantage of the fact that a fixed subset of features are 
permitted on a node. 
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Feature coercion during type unification arises in systems where a typed node contains attrib-
ute-value pairs which bind features to nodes. This is the fundamental conception of per-node 
storage: consider a TFS path as a hierarchical sequence of node-feature alternations 
(𝑞, 𝑓𝑓, 𝑞,𝑓𝑓, … ),15 where each feature 𝑓𝑓 is bound rightwards to a node 𝑞: 

 (𝑞, (𝑓𝑓 𝑞), (𝑓𝑓 𝑞), … ) (2.18) 

In an alternative approach, the feature is bound leftwards in the sequence, giving a model 
where each node-feature key addresses a subsequent node: 

 ((𝑞 𝑓𝑓), (𝑞 𝑓𝑓), (𝑞 𝑓𝑓) … ) (2.19) 

In the abstract, this subtle reformulation underlies the approach of array TFS storage, the main 
contribution of this thesis. Essentially, the method pushes the feature arity problem into the 
domain of node addressing. Integrating domain-specific knowledge—namely, details of the 
grammar’s feature appropriateness condition—into the node addressing scheme means that the 
maximally efficient native addressing (pointers) can no longer be used—since each address 
must now encode a contextually determined parameter—but in managed environments direct 
access is already compromised by additional indirection anyway. 

It is not entirely accidental that I depict one additional binding in (2.19) as compared to (2.18). 
Although the groupings are presented only as an informal conceptual aid, the additional tuple 
hints at an important result which follows from the new technique, a simplification that can be 
applied to a well-known TFS unification algorithm. This material is presented later in this the-
sis, and that presentation will recall this point. Details are given in Section 4.4.1. 

It turns out that strongly embedding the feature appropriateness condition into the storage ad-
dressing system ultimately results in a simplification of the unification algorithm. This is the 
subject of Chapter 4, but a summary of the insight is that, if the unifier can be guaranteed that 
the result TFS is entirely latent within a small, fixed set of fragmentary, mixed-arity feature 
mappings which are invariant precursors to the operation,16 then the number of data structures 
it must maintain and manipulate is reduced. This guarantee is indeed provided—by the map-
pings which comprise the operation’s input arguments themselves. The mixed-arity feature 
mappings which describe their internal storage layouts are efficient and sufficient for this pur-
pose because the result structure can always be represented by the arrangement of these pre-
existing mappings. When these maps are co-opted, the unifier is freed from the requirement 
that it be able to assemble arbitrary structural fragments in unforeseen ways, resulting in sim-

                                                   
15 Taking the features alone from this sequence describes a traditional TFS feature path, as described functionally in (2.7), 
but for storage purposes the type at each step of the way must also be accommodated, hence this interleaving.  
16 To be precise, the well-formedness requirement entails that some TFSes are not incorporated into the unification opera-
tion until it is already underway, but even for these the spirit of the statement holds, because their mappings were invari-
ant prior to—and remain so throughout—the operation. 
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plification over previous methods. In the end, the unifier work product is reduced to a simple 
list of scalar values which indicate its sequence of map selections.  

At the beginning of this section, I noted that, with per-node storage, the feature arity problem 
typically entails that redundant traces of the grammar’s feature-appropriateness condition ac-
cumulate in each node. To conclude this section, I extend the analysis to the conceptually 
shifted storage mode just introduced. Does it exhibit similar abstraction leakage? In fact, the 
proposed method still reveals the set of features which are appropriate for the type associated 
with a node, but the leak is more benign.  

The key difference is that in the new conception, the set of features cannot be independently 
retrieved from a node. To incorporate the feature identity into each node’s address, a one-way 
function—specifically, a hash of the combined node and feature identity—is used, and this 
prohibits the direct recovery of a node’s feature set. To accomplish this, a dependence on the 
grammar’s globally-invariant feature appropriateness condition is fundamentally incorporated 
in the new access model; see Section 2.3.6, below. By forcing recourse to this single reposito-
ry, the new model more strongly forfends against features being stored with a type for which 
they are inappropriate. 

To summarize this point, in some designs, per-node storage can exhibit a normalization leak, 
namely, that two sources of information can exist in conflict with little guidance about which is 
correct: the presence of a feature-value tuple in a TFS node might be taken as conclusive evi-
dence for the appropriateness of that feature for the type associated with the node—and this 
could be an error with regard to the global appropriateness condition. With array TFS storage, 
rogue features can still be stored, but since access requires that each caller obtain a feature key 
from the global invariant itself, later reference to such a feature would require two separate 
errors.17 

This concludes the discussion of motivating considerations in the design of a TFS storage sys-
tem. I now turn to the main contribution of this thesis. The next section presents a formal de-
scription of array TFS storage. An implementation of the method is described in Chapter 3. 

2.3 Array storage TFS formalism 
Carpenter’s formal presentation—with its separate, monolithic node-typing and feature-value 
functions which are only associated with the TFS itself—fares poorly as an engineering ab-
straction. Because both native and managed execution environments offer a cheap and ex-
tremely efficient perfect hash for a node—its memory address or object reference value—it 
would be quite arcane to consider a literal implementation of the node-typing and feature-value 

                                                   
17 The normalization issue is raised only as a hypothetical vehicle for illustrating a difference between the two methods. 
Naturally, implemented systems are designed and tested so that the conditions of the linguistic formalism are correctly 
enforced at all times and normalization errors cannot be introduced. 
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functions 𝜃 and δ, respectively. Instead, it is obvious programming practice to interconnect a 
hierarchy of node objects, yielding the per-node implementation of the graph formalism. 

But, as noted in Section 2.2.2, adopting the per-node view has problems of its own. Revisiting 
Carpenter’s theoretical model, which more strongly reifies the top-level TFS, may yield in-
sights appropriate to managed implementations. At the outset, discarding from the functional 
formalism the notion of bifurcated 𝜃 and δ functions immediately cuts the lookup overhead in 
half. Next, we consider the failed-unification discarding penalty; associating each allocation 
more strongly with the TFS to which it belongs has the potential to trivialize the discarding 
problem. Details on this are given in Section 4.4.3. 

A final benefit of reasserting the primacy of the top-level TFS is the potential for increased 
structure sharing. Generally, as discussed in Section 2.2.2, encapsulating nodes within larger-
scale movable structures inhibits the trivial sharing of substructure, but ironically, the identifi-
cation of each node with a particular TFS may also facilitate, in the unifier, dealing with shared 
structures. This is because operating on a 〈𝑇𝐹𝑆,𝑛𝑜𝑑𝑒〉 association allows the unifier to distin-
guish between repeated instances of identical nodes which should be recognized as distinct, 
and spurious sharing is eliminated.18 Despite not implementing sophisticated substructure shar-
ing, this is an advantage that the agree array storage unifier enjoys when unifying the same 
(top-level) argument TFS at multiple points in a single target,19 and which any future design 
for array storage sub-structure sharing should be careful to preserve.  

To further motivate departing from the per-node paradigm, I note that, in managed program-
ming environments, node access via a system reference may not result in the direct access of 
memory anyway; it may be mediated through the additional indirection required to support 
automatic garbage collection.20 Taken together, these factors suggest that independently cen-
tralizing the node storage for each top-level typed feature structure could result in improved 
performance in managed code systems, especially if combined with a synthetic access key that 
efficiently solves the feature arity problem. This is the motivation for array TFS storage. 

The remainder of this chapter describes a system where all of the nodes belonging to a single 
top-level TFS are monolithically encapsulated. Because this engineering treatment departs 
from the formal treatments of typed feature structures reviewed in Chapter 2, it is useful to ex-

                                                   
18 The issue here is that some single TFS instance which is part of the grammar may be introduced at multiple points in 
the target structure during the course of a single unification, and the coreferences in each of these instances must not be 
conflated.  
19 With the ERG, the case happens most often with certain difference-list sub-types which can trigger well-formedness 
unifications at multiple points in the same structure during the course of a single operation. As noted earlier in this chap-
ter, concurrent systems such as agree and CaLi (Callmeier 2001) trivially permit unfettered re-use of multiply-introduced 
structures. 
20 Many modern runtime environments implement Just-In-Time (JIT) compiling, where native code is prepared from the 
Intermediate Language (IL) on demand, and there is in fact no provision whatsoever for the direct interpretation of IL. In 
such systems, which includes the platform used by agree, certain types of memory access end up resembling the native 
memory access patterns. 
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plicitly clarify the terminology I will use. Where appropriate, notation concerning top-level 
structures from the functional formalism is adopted; for example, 𝑄 from (2.10) will refer to all 
nodes in a (top-level) TFS. To reiterate the issue raised in Footnote 7 on page 7, although the 
DAG conception of typed feature structures entails that each node has the formal form of an-
other typed feature structure, in this thesis, “TFS”—typed feature structure—will be under-
stood to refer only to structures whose topmost node is not referred to by any other TFS node. 
Excluded from the category are arbitrary portions of substructure within a TFS, namely any 
node 𝑞𝑖: 𝑞𝑖 ≠ 𝑞̅. The term will refer to linguistic TFSes in the abstract as well as implemented 
array storage TFSes, but in both cases will designate only top-level structures.  

The present work describes a system which abandons the fundamental assumption of per-node 
storage, namely, that each node necessarily has exactly one physical representation. A corol-
lary, also not adopted, is that reentrancy, or coreferencing between nodes, manifests exclusive-
ly as referential equality. Referential equality means that two entities are taken to be the same 
if and only if their addresses are discovered to be the same, implying that they are physically 
co-extant. In the case of computer memory, nodes are construed as globally unique, and coref-
erencing is signaled by value equality amongst memory addresses—that is, a single memory 
address—which is reached via multiple paths. I raise this issue because, while preserving the 
conflation of logical nodes, the physical node storage model in array TFS storage does not in-
corporate the same reliance on implicit referential equality, and this difference becomes signif-
icant in the unifier implementation. 

In array TFS storage, a single, contiguous allocation (per TFS) stores all of the structure’s 
nodes (except the root node) as an array of 4-tuples. The main advantages of this scheme are 
that it is trivial to collectively discard the nodes of a TFS, and the overheads for |𝑄| − 1 
runtime allocations,21 per TFS, are avoided. Indeed, although implemented in a managed-
execution environment, agree achieves performance comparable to a high-performance native 
parser. 

2.3.1 Notation 
This section summarizes notation from the relational algebra (Codd 1970) which is used to de-
fine array TFS storage and describe its operation. A relation 𝑅 is an unordered set of zero or 
more homotypical 𝑛-tuples, or entities, 𝑅 = 

 𝑟: 𝑟 = 〈𝑝0: 𝜏𝑝0,  𝑝1: 𝜏𝑝1, … ,  𝑝𝑛: 𝜏𝑝𝑛〉 (2.20) 

Each 𝑛-tuple 𝑟 associates a set of values 𝜏𝑟.𝑝𝑗 with a set of named, typed properties, or attrib-
utes 𝒫𝑅 = ( 𝑝0,𝑝1, … , 𝑝𝑛 ). The property-value mapping is uniform across all tuples in a rela-
tion. One can think of 𝑅 as a table of 𝑛 rows { 𝑟0, 𝑟1, … , 𝑟𝑛 } with column headings 𝒫𝑅, with 𝑝𝑖 
giving the name of each property. Tuple properties are typed within some global domain of 

                                                   
21 Recall from Carpenter’s notation that 𝑄 is the set of all nodes in a TFS. 
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types 𝜏 ∈ Τ particular to the application. A less cluttered method for indicating the types of 
tuple properties is  

 𝑟 = 〈𝜏𝑝0, 𝜏𝑝1, … , 𝜏𝑝𝑛〉(𝑝0, 𝑝1,…, 𝑝𝑛) . (2.21) 

The tuples’ values are referenced with ‘dot’ notation, so that 𝑟.𝑝0 is shorthand for the value of 
property 𝑝0 for tuple 𝑟:  

 𝑟.𝑝𝑖 = 𝜏𝑟.𝑝𝑖 = 𝑟(…, 𝑝𝑖,… ) 〈… , 𝜏𝑝𝑖, … 〉. (2.22) 

This shortcut can be applied to relations as well—which entails removed abstraction, of 
course—so that 𝑅.𝑝0 refers to the name of property 𝑝0 on relation 𝑅 

 𝑅.𝑝𝑖 = 𝒫𝑅 (… ,𝑝1, … ). (2.23) 

Relations can be restricted by property or by range, with the π and σ operators, respectively. In 
the first case, the PROJECTION operator 

 π𝒫′=(𝑝𝑖, 𝑝𝑗,… )(𝑅) (2.24) 

expresses a new relation where each tuple from 𝑅 has the values corresponding to the proper-
ties in 𝒫′ deleted. This can result in duplicate tuple values, which are removed, since well-
formed relations are, by definition, distinct. In some discussions, I relax the requirement that 
the range of a relation be distinct; these sections of the text will explicitly state the conditions 
of the suspension. Related to this is the need to retrieve a specific relation entity in tuple form, 
which is discouraged in relational algebra, where every operation is conceived as a total map 
from finite relation to finite relation (Tannen et al. 1992). For this, I permit referring to indi-
vidual tuples via zero-based subscripting, meaning that 𝑟𝑖 refers to some entity which is present 
in relation 𝑅. As relations are not ordered, further utility of this type of indexing is limited to 
cases when relation distinctness has been suspended and all of a relations tuples are known to 
be identical, or when the relation is known to contain a single n-tuple, and I wish to manipulate 
the singular distinct tuple. In either case, that tuple is—arbitrarily—any member of the rela-
tion, so it can be extracted from the relation as follows: 

 𝑟 = argany(𝑅). (2.25) 

Later in the presentation, in order to facilitate working with storage indexes, I incorporate an 
entity’s storage index within its relation as a tuple property, but this will be understood as not 
changing the underlying storage of the relation. In practice, scalar values pertaining to the cur-
rent node (such as a storage index) are explicitly propagated and carried for within the algo-
rithm. This relaxed approach to indexing is possible because the array storage relations dis-
cussed in this thesis are read-only, and entity indexes, once established, never change. 



25 
 

Returning to a review of relational algebra operators, the SELECT operator σ𝜑(𝑅) applies the 
propositional predicate 𝜑 to each tuple in 𝑟 ∈ 𝑅 in turn, giving a new relation 𝑆 ⊆ 𝑅 which 
contains zero or more matching tuples from 𝑅. 

Finally, 𝑄 = 𝑅 ⋈ 𝑆 describes the inner—or ‘natural’—JOIN operation for relations, which, for 
each property in 𝒫𝑅 ∩  𝒫𝑆, yields a new relation containing zero or more tuples 𝑄 with 
𝒫𝑄 = 𝒫𝑅⋃ 𝒫𝑆, 

 𝑄 = { 〈… 〉𝒫𝑄 0, 〈… 〉𝒫𝑄 1, … } (2.26) 

according to 

 σ⋀ 𝑟.𝑝 = 𝑠.𝑝𝑝 ∈ 𝒫𝑅∩ 𝒫𝑆
(𝑅 × 𝑆), (2.27) 

that is, a set of tuples of the form 〈… 〉𝒫𝑅∩ 𝒫𝑆 , selected from 𝑅 × 𝑆, where 𝑟 ∈ 𝑅 and 𝑠 ∈ 𝑆 share 
the same value for all corresponding property pairs, if any. It follows that, if 𝒫𝑅 and 𝒫𝑠 are dis-
joint, their inner join collapses to their Cartesian product 

 (𝒫𝑅 ⋂ 𝒫𝑆 = ∅)  → (𝑅 ⋈∅ 𝑆 = 𝑅 × 𝑆). (2.28) 

2.3.2 Formal description 
I describe array storage with the relational algebra. At the outset, I point out that the objective 
is a theoretical model of a particular implemented system, as opposed to an idealized relational 
algebra model of the typed feature structure. Much of the vocabulary developed in this section 
is applicable to other designs, but the specific characteristics of the model presented in this sec-
tion ultimately derive from engineering considerations—discussed in Chapter 3—and not from 
a criterion of descriptive elegance. The most egregious departure from an idealized model is 
that the out-tuple relation, taken alone, is not a well-formed (relational algebra) relation, a 
point which is the topic of Section 2.3.5. 

I introduce the treatment by recalling the graph conception of a node. This is extended to a 
form suitable for relational algebra representation. As a storage model, this object model will 
at first contain no intrinsic provision for describing coreferenced nodes within the TFS. As the 
model is incrementally extended, this limitation is removed, and steps at which coreferencing 
is relevant will be pointed out. Notation from the functional formalism will be adapted where 
possible. However, Carpenter’s use of 𝜋 as a TFS path instance, 𝜎 as a type instance, and of ⋈ 
as an equivalence relation, are in conflict with the relational algebra use of these symbols for 
the PROJECT, SELECT, and JOIN operations, respectively. To avoid ambiguity, I will designate 
paths with 𝛼 and types with, e.g., 𝑡𝑡 or 𝑡𝑡̅. 22 

                                                   
22 TFS equivalence is not discussed in this thesis, so the symbol ⋈, used in (2.40), refers to JOIN. 
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In unification grammar 𝐺 = 〈FEAT, 〈TYPE, ⊑〉, Approp(𝑓𝑓, 𝑡𝑡), … 〉, a typed feature structure 𝐹 con-
sists of a set of nodes 𝑄 which each associate a type 𝑡𝑡 ∈ TYPE with zero or more feature/node 
tuples: 

 𝑞𝑖 = 〈 𝑡𝑡, { 〈𝑓𝑓, 𝑞𝑗〉, … } 〉 , 𝑡𝑡 ∈ TYPE, 𝑓𝑓 ∈ FEAT, 𝑞 ∈ 𝑄. (2.29) 

One node, 𝑞̅ ∈ 𝑄 is distinguished as the root of the TFS: 

 𝐹 = 〈𝑞̅,𝑄〉 , 𝑞̅ ∈ 𝑄. (2.30) 

Additional conditions apply to this definition, for example, that every 𝑞 ∈ 𝑄 be reachable from 
𝑞̅, that the structure contain no cycles, or that all of the features in 𝑞𝑖 = 〈 𝑡𝑡, { 〈𝑓𝑓, 𝑞𝑗〉, … } 〉, if 
any, be appropriate for 𝑡𝑡. Other authors have thoroughly developed these points for the func-
tional treatment (Carpenter 1992) and the graph treatment (King 1994). 

Direct mapping of such structures as flattened relational algebra relations, while possible, is ill-
considered as an engineering design. For example, because each node constrains a small frac-
tion of the features in FEAT, a relational model with properties 𝒫 = ( 𝑡𝑡̅,𝑓𝑓0,𝑓𝑓1, … , 𝑓𝑓|FEAT|−1) im-
plies a vast and sparsely populated table of nodes. And although one could imagine distasteful 
workarounds, 𝒫 = (𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡|TYPE|−1) is effectively ruled out because π(𝑡)(𝐹) provides no 
way to identify the recovered features. This thesis discusses unworkable schemes such as these 
no further. Rather than exposing contentful linguistic features from the grammar in a relational 
algebra, the focus of array TFS storage will be on schemes of the variety 𝒫 = (FEAT, TYPE, …), 
that is, fixed-arity relational models into which the linguistic elements are subsumed as data (as 
opposed to relation properties). 

The fundamental structural entity in array TFS storage is a 4-tuple, conceived as a pair of phys-
ically contiguous 2-tuples 

 𝑎𝑖 = 〈 〈𝑓𝑓,𝑚𝑚𝐹𝐹〉(FEAT,ℤ) , 〈𝑡𝑡,𝑚𝑚𝑇𝑇〉(TYPE,ℤ) 〉,𝑚𝑚𝐹𝐹 ≠ 0. (2.31) 

Each 2-tuple pairs an encoded linguistic feature or type, respectively, with an integer. The 
“mark” integers 𝑚𝑚𝐹𝐹 and 𝑚𝑚𝑇𝑇 will be discussed shortly. As a notational convenience, entities 
from relation 𝑎 can be equivalently expressed in flattened 4-tuple form 

 𝑎𝑖 = 〈 𝑓𝑓,𝑚𝑚𝐹𝐹, 𝑡𝑡,𝑚𝑚𝑇𝑇 〉. (2.32) 

In this thesis, a tuple of the form 〈𝑓𝑓,𝑚𝑚𝐹𝐹〉(FEAT,ℤ)  is called an in-tuple, and a tuple of the form 
〈𝑡𝑡,𝑚𝑚𝑇𝑇〉(TYPE,ℤ)  (or 〈𝑡𝑡̅,𝑚𝑚𝑇̅𝑇〉(TYPE,ℤ) ) is called an out-tuple.23 In graph terms, the in-tuple corre-

sponds to an arc, while the out-tuple corresponds to a node, but this presentation generally 
avoids the former term (except in the context of prior work) and more methodically develops 
the latter. Henceforth, the unwieldy property-typing prefix may be omitted from the 2-tuples, 
                                                   
23 I will try to avoid using the term edge for describing the out-tuple, even though it is pervasive in the source code of the 
implemented system. Among other confusions, it has an unrelated sense in chart parsing.  
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since the tuple type can be trivially deduced. Relations of entity 𝑎 (unordered collections of 
zero or more entities of the form 〈 𝑓𝑓,𝑚𝑚𝐹𝐹 , 𝑡𝑡,𝑚𝑚𝑇𝑇 〉(FEAT,ℤ,TYPE,ℤ) ) are denoted by 𝐴. 

Array storage for a given TFS consists of exactly one contiguous array of these tuples, given as 
the relation 𝔸. Although a single array storage relation could, in principle, be used for all 
TFSes within the entire grammar,24 designating the TFS as the extent of a storage relation is 
preferred, as it trivializes the problem of TFS discarding. The 4-tuples in 𝔸 are unordered, 
which is to say the fixed order in which they happen to be arranged—and which happens to be 
of great interest to the unification algorithm presented in Section 4.4—is not formally signifi-
cant. 

In array storage, a typed feature structure 𝐹 is defined by a root tuple 𝑞̅𝐹𝐹 = 〈𝑡𝑡,𝑚𝑚𝑇𝑇〉(TYPE,ℤ)  and a 
relation 𝔸 ⊇ 𝐴 on 𝒫𝐴 = (𝑓𝑓 ∈ FEAT,𝑚𝑚𝐹𝐹 ∈  ℤ, 𝑡𝑡 ∈ TYPE,𝑚𝑚𝑇𝑇 ∈  ℤ), 𝐹 = 〈𝑞̅𝐹𝐹 ,𝔸〉. The definition 
will have more utility with its root tuple 𝑞 decomposed: 

 𝐹 = 〈 〈𝑡𝑡,𝑚𝑚𝑇𝑇〉(TYPE,ℤ) ,𝔸〉,σ𝑚𝐹=0(𝔸) = ∅. (2.33) 

For convenient property access, the latter form is given flattened property names, 

 𝐹 = 〈𝑡𝑡,𝑚𝑚,𝔸〉. (2.34) 

For this thesis, this definition is complete, meaning that instances of 𝐹 are given, and they en-
compass the entire storage and sufficiently describe all substructure of a TFS. When it is clear 
that only a single TFS is being discussed, reference to the relation 𝐹.𝔸 can be abbreviated 𝔸. 
As additional descriptive vocabulary is developed, it is important to remember that only (2.33) 
most closely models the implementation representation. For example, consider the description 
of TFS node 𝑞 developed later in this section: 

 𝑞 = 〈〈𝑡𝑡,𝑚𝑚𝑇𝑇〉,𝐴〉. (2.35) 

In this expression, the 4-tuple relation 𝐴 is taken to represent the subset 𝐴 ⊆ 𝔸 of zero or more 
feature-value pairs directly associated with node 𝑞, which is not exactly a generalization of 
〈𝑡𝑡,𝑚𝑚,𝔸〉, where the 4-tuple relation represents the unrestricted set of all nodes in a TFS. In 
fact, entities such as 𝑞—which encapsulate a (most probably) restricted 4-tuple relation—have 
no formal corollary in the storage implementation, wherein every operation ultimately involves 
only 𝐹.𝑡𝑡, 𝐹.𝑚𝑚, and 𝔸. Only as fleeting memoranda in TFS manipulation algorithms—such as 
the array TFS unifier described in Section 4.4—do further derived entities find implementation 
purview. To summarize this point, I contrast a typed feature structure definition, 𝐹 = 〈𝑡𝑡,𝑚𝑚,𝔸〉, 
with a description of its root node, 𝑞̅𝐹𝐹 = 〈𝐹.𝑡𝑡,𝐹.𝑚𝑚,𝐴〉. The key task of the remainder of this 
section is to characterize this latter tuple, and, in particular, the (useful but theoretical) relation 

                                                   
24 A related idea was investigated early in this research. In the earlier implementation, each feature was associated with a 
singleton array which comingled out-tuples from all (disjoint) TFSes. This “diffuse TFS storage” method did not offer an 
acceptably efficient solution to the TFS discarding problem. 
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𝐴, for all remaining 𝑞 ∈ 𝑄, giving the complete set of out-tuples 𝑄 in 𝐹, the nodes of typed 
feature structure 𝐹. 

The notation 𝑚𝑚 denotes a mark, an arbitrary integer. In the discussion that follows, marks may 
be distinguished as in-marks or out-marks, depending on the context in which they appear. 
Typically the context is the type of tuple (feature vs. type, respectively) the mark came from. 
But mark values serve to relate, by inter-equality, paired 2-tuples within the same TFS as be-
longing to the same logical TFS node, so no mark value (except for zero, which is forbidden as 
an in-mark) is inherently context-bound. In particular, for mark 𝑚𝑚, the set of tuples 

 π𝑓,𝑡σ𝑚≠0 ⋀ 𝑚𝐹=𝑚(𝔸) (2.36) 

selects the set of attribute-value pairs 〈𝑓𝑓, 𝑡𝑡〉 in feature structure 𝐹 which belong to node 

 𝑞𝑚 = 〈𝑡𝑡̅,π𝑓,𝑡σ𝑚≠0 ⋀ 𝑚𝐹=𝑚(𝔸)〉. (2.37) 

The conjunction term excluding in-mark zero in the SELECT operation is redundant given the 
array TFS definition. From here on, it is omitted. This expression represents node reconstitu-
tion, as it permits the outward links of a traditionally-conceived node 〈𝑡𝑡̅, {〈𝑓𝑓, 𝑡𝑡〉, … }〉 to be re-
covered. In prose, from every 4-tuple whose (non-zero) in-mark shares the same value as the 
mark of some governing out-tuple, a set of tuples 〈𝑓𝑓, 𝑡𝑡〉 is extracted, and this node is of type 𝑡𝑡̅, 
where 𝑡𝑡̅ is the type stored in a “governing” out-tuple, discussed below. In the current design, 
for any out tuple 〈𝑡𝑡,𝑚𝑚𝑇𝑇〉 where type 𝑡𝑡 has no appropriate features, 𝑚𝑚𝑇𝑇 is required to have the 
value zero, a value which cannot be used to select further feature-value pairs. This is elaborat-
ed in Section 3.2.3. 

The adequacy of array storage for linguistic modeling is achieved via two joining mechanisms. 

(2.38) Each one-to-𝑛 equivalence between a non-zero out-mark and the 𝑛 ≥ 1 oc-
currences of in-mark 𝑚𝑚𝐹𝐹 represents the set of 𝑛 constraints on node 𝑞𝑚𝐹, or 
simply 𝑞𝑚. Nodes with a type that has no appropriate features are given 
𝑚𝑚𝑇𝑇 = 0, which explicitly selects no features. Observe that because 𝑚𝑚𝐹𝐹 is 
barred from having the value zero, every constraint belongs to some out-
tuple25 which expresses that non-zero value as its out-mark. 

(2.39) Every in-tuple is permanently bound (by storage adjacency) to exactly one 
out-tuple—although the latter may be value-equivalent with other occurrenc-
es in 𝔸, giving a total of 𝑛 ≥ 1 copies. This is a form of 𝑛-to-one equivalence 
between in-mark 𝑚𝑚𝐹𝐹 and out-mark 𝑚𝑚𝑇𝑇.  

                                                   
25 More precisely, the correctness condition for any in-mark in array TFS 𝐴 is that it be equal to either some non-zero 
out-mark present in 𝔸 or equal to 𝐴.𝑚𝑚, the mark of the root out-tuple: 𝑚𝑚 ∈ π𝑚𝐹𝐴.𝔸: 𝑚𝑚 ∈ {𝐴.𝑚𝑚} ∪  π𝑚𝑇σ𝑚𝑇≠0 (𝐴.𝔸). 
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a. If 𝑛 = 1, then the one-to-one equivalence represents that 𝑞𝑚𝑇 is a con-
straint for feature 𝑞𝑚𝐹 .𝑓𝑓 in 𝑞𝑚𝐹. 

b. If 𝑛 > 1, the many-to-one value equivalencies represent the 𝑛 reen-
trancies from assorted node-feature pairs to coreferenced node 𝑞𝑚𝑇. 

Although (2.37) appears similar to an inner join on the 𝑚𝑚 property between the paired tuples in 
𝔸, this is not a precisely correct interpretation in relational algebra. Because array storage 
physically couples in- with out-tuples, the 𝔸𝑂�𝑇𝑇 relation cannot be considered an independent 
relation. In this form, it is not necessarily distinct. As noted in (2.39), coreferences in the mod-
eled feature structure introduce a duplicate copy of 〈𝑡𝑡,𝑚𝑚𝑇𝑇〉(TYPE,ℤ)  for each reentrancy, an issue 
discussed further in Section 2.3.4. However, if we imagine for a moment an implementation 
where independent, well-formed relations 𝔸�𝑁 and 𝔸𝑂�𝑇𝑇 each contain a non-zero property 𝑚𝑚, 
then node reconstitution is equivalently recast as a projection of a natural join 

 𝑞𝑚′ = 〈𝑡𝑡,̅π𝑓,𝑡σ𝑚′=𝑚(𝔸𝑂�𝑇𝑇 ⋈ 𝔸�𝑁)〉. (2.40) 

Inner join is commutative, but here the out-relation is shown on the left to emphasize that it is 
the out-to-in join (2.38) that is explicit, whereas the in-to-out binding (2.39) is implicit in the 
storage. The coupled 4-tuple approach was chosen precisely because it avoids this extra join 
operation, and also for the simplicity of having a single garbage-collected allocation encom-
pass the entire contentful storage of a typed feature structure. Additional engineering consider-
ations are addressed in Chapter 3. 

2.3.3 Node governance 
The presentation of the node expression, above, elided discussion of the node’s governing out-
tuple, wherefrom the node’s type 𝑡𝑡̅ was recovered. This will now be addressed. In array TFS 
storage, the address of every node (except 𝑞̅) fundamentally incorporates its immediate context 
with regard to some other node. At the outset, it is important to note that this context is not a 
path expression—from 𝑞̅ to 𝑞, or otherwise. Rather, the context is a single node wherein the 
type and mark which selects 𝑞 can be found. In traditional terms, the governing out-tuple cor-
responds to one specific parent node (out of the one or more) which has a path to 𝑞. 

As an important first case, for the root node of a TFS, the governing out-tuple is given in the 
TFS definition. The governing out-tuple for TFS 𝐹 is explicitly given as 𝑞̅ = 〈𝐹.𝑡𝑡,𝐹.𝑚𝑚〉, so the 
type of feature structure 𝐹 is 𝐹.𝑡𝑡. To reconstitute a node given its non-zero mark 𝑚𝑚, Equation 
(2.37) first gathers feature-value pairs according to σ𝑚𝐹=𝑚(𝔸). Taking this step alone, the set 
of 4-tuples corresponding to the feature-value pairs for 𝑞̅𝐹𝐹, the root node of 𝐹, is given by 

 𝐴𝑞̅𝐹 = σ𝑚𝐹=𝐹𝐹.𝑚(𝔸). (2.41) 

Next, (2.37), repeated here (2.42), projects 〈𝑓𝑓, 𝑡𝑡〉 pairs that include only the type associated 
with each feature. In practice, this is incomplete because it does not permit a way to recover 
further substructure. For this, I extend the node tuple notation given in (2.29) and (2.19) so that 
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it preserves the out-mark from its canonical 4-tuple, that is, the 4-tuple in which 𝑡𝑡̅ was stored. 
It is straightforward to do this by including the entire governing out-tuple in the generalized 
node description, as shown in (2.43). For convenience, this tuple is given the flattened notation 
(2.44). 

 𝑞𝑚 = 〈𝑡𝑡̅,π𝑓,𝑡σ𝑚≠0 ⋀ 𝑚𝐹=𝑚(𝔸)〉. (2.42) 

  𝑞 = 〈〈𝑡𝑡,𝑚𝑚𝑇𝑇〉,𝐴〉. (2.43) 

  𝑞 = 〈𝑡𝑡,𝑚𝑚,𝐴〉. (2.44) 

But as a reminder, note that this—and all other—extensions to the notation are developed for 
expository convenience, and do not change the underlying array storage definition of a typed 
feature structure 𝐹, which is still given by 

 𝐹 = 〈〈𝑡𝑡,̅𝑚𝑚𝑇̅𝑇〉, {〈〈𝑓𝑓,𝑚𝑚𝐹𝐹〉, 〈𝑡𝑡,𝑚𝑚𝑇𝑇〉〉, … }〉. (2.45) 

From an engineering standpoint, it is worth understanding the abstraction captured by these 
extensions. Later in this chapter, I show that they mirror transient structures that facilitate array 
TFS manipulation. Having defined property names for the graph node tuple, I can now express 
the appropriateness condition which was elided in (2.29): 

 ∀
𝑞 ∈ 𝑄∪{𝑞̅}

  ∀
𝑓 ∈ π𝑓(𝑞.𝐴)

: Approp(𝑓𝑓, 𝑞.𝑡𝑡)↓ 
(2.46) 

As this is a condition of formal correctness, it can also be viewed as a constraint on relation 
𝐴𝑞, the set of rows in 𝔸 corresponding to node 𝑞’s feature-value pairs. It is not complete as 
such, however, since it does not assert, for example, that the set of features in 𝐴 be distinct: 

 𝐴: |𝜋
𝑓
𝐴| = |𝐴| (2.47) 

I have yet to describe the process of recovering the governing out-tuple from a given feature-
value pair. This is required, for example, in order to ascertain the node’s type. Here, the intri-
cate structure of array TFS storage is more deeply revealed. Capitalizing on the property of a 
TFS that it is fully connected—that is—that all of its nodes are reachable from the root node 
𝑞̅𝐹𝐹, array storage associates the canonical storage location of node 𝑞 with the one or more im-
mediate parent in-tuples 〈𝑓𝑓,𝑚𝑚𝐹𝐹〉 that connect it to 𝑞̅𝐹𝐹 . More specifically, the governing out-
tuple for node 𝑞 is found amongst the set of 4-tuples 

 𝑆(FEAT,ℤ,TYPE,ℤ) = σ𝑚𝑇=𝑞.𝑚(𝔸), (2.48) 

that is, those with out-mark value equal to node 𝑞’s in-mark. From this set, each 4-tuple 
𝑠 = 〈 𝑓𝑓,𝑚𝑚𝐹𝐹 , 𝑡𝑡,𝑚𝑚𝑇𝑇 〉 binds 𝑞, now equivalently 

 𝑞 = 〈𝑠.𝑡𝑡, 𝑠.𝑚𝑚𝑇𝑇 ,σ𝑠.𝑚𝑇≠0 ⋀ 𝑚𝐹=𝑠.𝑚𝑇(𝔸)〉, (2.49) 



31 
 

as a value for feature 𝑠.𝑓𝑓 in some node 𝑞𝑠.𝑚𝐹.26 Continuing now with the discussion of the gov-
erning out-tuple, observe that relation, π𝑡,𝑚𝑇(𝑆), will always collapse to either zero elements 
(if and only if 𝑞.𝑚𝑚 is zero), or exactly one element, 

 𝑠 =  argany(𝜎𝑚𝑇=𝑚(𝔸)). (2.50) 

In the latter case, this gives the governing out-tuple for 𝑞, 〈𝑠.𝑡𝑡, 𝑠.𝑚𝑚〉 or simply 〈𝑠.𝑡𝑡,𝑚𝑚〉. This 
allows us to form a complete relational algebra expression for node 𝑞𝑚, the node correspond-
ing to mark 𝑚𝑚: 

 𝑞𝑚 = 〈𝑠.𝑡𝑡,𝑚𝑚,σ𝑚𝐹=𝑚(𝔸)〉. (2.51) 

However, this does not exemplify a useful operational mode in the actual array storage imple-
mentation. First, being physically bound into a 4-tuple, the out-tuple relation alone is not well-
formed (details follow in Section 2.3.4), and value equivalence is not automatically recognized 
amongst its distinct entities. But furthermore, as I explain in Section 4.4.2, this is a problem for 
the unification implementation, which requires that each node be given a perfect mapping. It 
would not be immediately clear how to privilege one of the rows in 𝑆 over the others. But more 
critically, array storage is not indexed in a way that permits efficiently selecting 4-tuples ac-
cording to out-mark 𝑚𝑚𝑇𝑇, as expressed by 𝑆. The actual access method, which exploits the 
grammar’s type appropriateness condition, is described in Section 2.3.6. 

In array TFS storage, knowing value 𝑚𝑚 permits retrieval of feature-value pairs for 𝑞𝑚, accord-
ing to a match of 𝑚𝑚 with zero or more in-marks, but given only 𝑚𝑚, it is not practical to discov-
er 𝑞𝑚. 𝑡𝑡, the type of node 𝑞𝑚. Instead, based on a pragmatic observation, array TFS storage 
delegates to the caller the responsibility for maintaining 𝑞𝑚. 𝑡𝑡. The key observation is that nav-
igation is implicit in every TFS operation; the requirement for examining a node never occurs 
in the absence of navigational context. When this appears not to be the case, there is always an 
outer operational scope which ultimately resolves to the root node of the TFS under considera-
tion. 

It is especially logical to delegate the responsibility for maintaining this information when con-
sidering the fact that the out-tuple governing 𝑞𝑚 may be repeated, by value, across multiple 
rows in 𝔸. Although each of these rows, if there is more than one, necessarily holds the same 
type value, the lack of a distinguished storage location poses a dilemma for the array storage 
unification algorithm presented later in this thesis. Section 4.4.2 describes how the conflation 
of coreferenced nodes, since it is not implicit in array storage, is instead effected by the unifi-
cation procedure.  

                                                   
26 The conjunction excluding zero is restored here as a reminder that the node we are studying—node 𝑞—is usually not 
realized as this sort of full-form tuple when the type of its governing out-tuple has no appropriate features. As will be 
discussed later in this section, tuples of the form 𝑞 = 〈〈𝑡𝑡,𝑚𝑚𝑇𝑇〉,𝐴〉 model entities which most closely parallel fields which 
are only present in an operational, recursive, daughter stack frame. When a node has no features, it is likely that such a 
call is never made, in which case the frame will never exist. 
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Reviewing to this point, I first showed that the value of mark 𝑚𝑚 pertaining to node 𝑞 is re-
quired for selecting its features via σ𝑚𝐹=𝑚(𝔸). Next, we saw that the type of a node is stored 
in its governing out-tuple, but the resulting expression 

 𝑞𝑚 = 〈𝑠0.𝑡𝑡,𝑚𝑚,σ𝑚𝐹=𝑚(𝔸)〉 (2.52) 

still took as ‘given’ the mark value 𝑚𝑚 that was sought. What I did not yet unambiguously illus-
trate is precisely where this mark comes from. Thus far, the presentation has been licensed by 
tacitly asserting a correspondence between 𝑚𝑚 and the role of the node “pointer” in a traditional 
per-node TFS implementation. A practical implementation of any system will implicitly main-
tain references to entities that it is currently working with. In a per-node system, nodes are ref-
erenced by pointers whose values signify memory addresses. These addresses carry no inherent 
significance and require no further discussion. In contrast, the description of array storage is 
expanded such that the token used to reference a node incorporates domain knowledge. There-
fore, it is instructive to examine more closely the runtime provenance and operational use of 
𝑚𝑚. 

We know that the first two fields in this tuple are notational extensions with undefined storage 
manifestation, but their form nevertheless provides a helpful insight. The mark 𝑚𝑚 was in fact 
collapsed from the trivial identity 

 𝑚𝑚 = argany(𝜎𝑚𝑇=𝑚(𝔸)).𝑚𝑚𝑇𝑇 , (2.53) 

applied to 𝑠. Indeed, taken as a single entity, the singular element of π𝑓,𝑡𝜎𝑚𝑇=𝑚(𝔸) is simply 
the full governing out-tuple. Accordingly, just as the node’s governing type 𝑞𝑚. 𝑡𝑡 is not acces-
sible given the value of 𝑚𝑚 alone, neither is its governing mark 𝑞𝑚.𝑚𝑚. Both of these fields—the 
governing type together with the governing mark—are stored as one or more copies of an iden-
tical out-tuple 〈𝑠𝑖. 𝑡𝑡, 𝑠𝑖 .𝑚𝑚〉, none of which are accessible via the node’s own mark. 

It is now obvious that it is the responsibility of the storage consumer to pass not just the gov-
erning type, but rather the entire governing out-tuple into its recursive daughter frame. This 
burden is not onerous. All TFS operations—whether operating on traditional data structures or 
array storage—already pass a node pointer down to recursive stack frames, and this role in ar-
ray storage is assumed by 𝑚𝑚. The difference with array TFS storage is that it may require the 
node type to be passed down as well. Acknowledging this returns us to the earlier description 
of a node, adjusted so that marks are not discarded, and where the node’s type 𝑡𝑡̅ is provided 
from without: 

 𝑞𝑚 = 〈𝑡𝑡̅,𝑚𝑚,σ𝑚𝐹=𝑚(𝔸)〉. (2.54) 

This concludes the core formal description of array TFS storage. The design suggests a new 
graphical form which is presented in the next section. Following this, Section 2.3.5 will briefly 
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explain an important practical implication of the bound 4-tuple design. To conclude the formal 
discussion, Section 2.3.6 will present an analysis of the operational retrieval mode. 

2.3.4 Array TFS graphical form 
 Because array TFS storage disrupts the referential equality of joined nodes (by representing 
them with multiple disjoint, albeit value-identical, physical entities), the DAG interpretation of 
typed feature structures (presented in Section 2.1.3) could be taken as no longer applying to the 
new storage form. Instead, the form can be modeled according to a graphical model presented 
in this section. 

Formally, two entity types are represented, the in-tuple (the feature “arc” in the traditional 
DAG) and the out-tuple, or “node,” and the two appear to establish disjoint structures. Howev-
er, in array storage each in-tuple is physically bound with exactly one out-tuple, complicating 
matters. One approach might be to model each on a graph of its own, with the graphs then in-
terconnected. Instead, I fuse each tuple pair into a single “hybrid” node with exactly two con-
nection points. Then, every unique mark value in the TFS (except zero) is represented by ex-
actly one connected set of arcs which attach to these points. Connections to the left side of a 
node signify value equality with the node’s in-mark, 𝑚𝑚𝐹𝐹, while connections to the right side of 
a node signify value equality with the node’s out-mark, 𝑚𝑚𝑇𝑇. A special node for the root of the 
TFS therefore does not permit left-side connection. 

The new form, a non-directed, acyclic graph, is illustrated in Figure 7. For clarity, the different 
types of connections are drawn differently. When an out-mark 𝑚𝑚𝑇𝑇 connects to an in-mark 𝑚𝑚𝐹𝐹, 

 
a. 

 
c. 

Figure 7. Typed feature 
structure (a.), shown 
with the traditional 
DAG interpretation (b.) 
and a new graph form 
which parallels the array 
TFS storage representa-
tion (c.). 

Each “node” in (c.) cor-
responds to an array 
storage 4-tuple, a bound 
pair consisting of an in-
tuple (shown as a con-
nection point on the left 
side of a node) and an 
out-tuple (on the right 
side). 

Connections are labeled 
with mark values, which 
relate in-tuples to in-
tuples (left-to-left, black 
line), out-tuples to in-
tuples (right-to-left, blue 
line), and coreferenced 
out-tuples (right-to-
right, dotted black line).  

b. 
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a blue line is drawn. This represents a node (out-tuple) selecting its immediate substructure 
(feature-value pairs) so the line always connects the right side of a node with the left side of 
another node. For example, the blue line labeled ‘6’ indicates that this is the value of the out-
mark in a node with type ‘cons’ that has feature-value pairs ‘FIRST’ and ‘REST.’ Note that 
although there are two feature-value pairs, only one of them—an arbitrary selection—is given 
this type of connection. This is because all connections are transitive in this non-directed 
graph, a point which nicely leads to a discussion of connections between feature-value pairs. 
These are shown with black lines, which connect amongst two or more in-tuples, and therefore 
always connect the left sides of nodes. Lastly, coreferencing—which relates a common mark 
value amongst two or more out-tuples—is shown with a dotted line connecting the right-sides 
of the corresponding nodes. In the example TFS in Figure 7, there is just a single coreference, 
which transitively relates arcs 𝑚𝑚𝐹𝐹 = −1 and nodes 𝑚𝑚𝑇𝑇 = −1, illustrating in this case all three 
types of connections. 

This graphical representation will be useful for the array TFS unification examples in Section 
4.4 because it emphasizes the particular internal structure (of the storage pattern) which is co-
opted by the new algorithm. In particular, the discussion will note that any TFS unification re-
sult (except of course ⊥) yields a structure which is guaranteed to be representable as a simple 
list of interconnections between structures which have the form illustrated here—namely, the 
original argument TFSes. Seen in this way, the unification procedure is greatly simplified. It 
becomes the task of revealing a structure which is necessarily latent amongst the given set of 
invariant argument graphs. The benefit of moving complexity out of the unifier—by allowing 
it select from amongst pre-made structures—is that parsing re-uses argument graphs across 
multiple unification operations, so work moved to other components may engender the amorti-
zation of the transferred costs. 

2.3.5 Properness of the out-tuple relation 
In Section 2.3.2, I mentioned that projections of the form 

 π𝑡,𝑚𝑇(𝐴) (2.55) 

may require special treatment in array storage. Because 𝐴 binds in- and out-tuples together into 
a single 4-tuple, the intended identity of the out-tuples in 𝑆 manifests as value—as opposed to 
referential—identity. In other words, in the current design, any 𝐴(FEAT,ℤ,TYPE,ℤ) —and in fact 𝔸 
itself—resembles an inner join (2.40) where identical out-tuples are replicated by value. The 
effect is transparent to most consumers of array storage. Because out-tuples are delivered to 
them by-value, they have no way to discern any difference between the (identical) copies of a 
coreferenced out-tuple that originate from different rows in 𝔸. The issue is of great concern to 
the array storage unifier, however. Because it uses a special access mechanism to obtain stor-
age indexes, the lack of physical (as opposed to logical) node equality in array storage be-
comes patently clear. It becomes the responsibility of any client that “peeks behind the curtain” 
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like this to re-establish or somehow account for coreferencing that is not referentially “auto-
matic.” Fortunately, the unifier has at hand an ideal mechanism for this task—the scratch slot 
forwarding mechanism which is central to unification. The technique will be discussed 
throughout Section 4.4. 

Singularity of the out-tuple relation 

 π𝑡,𝑚𝑇σ𝑚𝑇=𝑚(𝔸) (2.56) 

for all 𝑚𝑚 in the context of the improper storage relation 𝔸𝑂�𝑇𝑇 insists that each distinct, non-
zero value of 𝑚𝑚𝑇𝑇 in 𝔸 always be associated with the same type: 

 ∀𝑚𝑚(𝑚𝑚 ∈ 𝜋𝑚𝑇(𝔸))  ⋀ (𝑚𝑚 ≠ 0): |𝜋𝑡,𝑚𝑇𝜎𝑚𝑇=𝑚(𝔸)| = 1. (2.57) 

This is a required property of array storage which is not intrinsically entailed by the bound 4-
tuple design. Accordingly, the requirement is transferred to the domain of operational en-
forcement, an acknowledged compromise attributed to well-motivated engineering considera-
tions. 

In the next section, the node description is further extended to more closely model the actual 
implementation, where selecting from 𝔸 always requires both feature 𝑓𝑓 and mark 𝑚𝑚 to be sup-
plied. 

2.3.6 Feature enumeration 
Although the preceding section serves as a minimally sufficient description of array TFS stor-
age, additional important concerns reside in a zone which blurs the distinction between practi-
cal implementation and formal necessity. Efficient access being critical, a presentation of the 
precise storage and access methods will follow in Section 3.2. But first, it is important to reit-
erate the essential reliance that the current design establishes with respect to a particular aspect 
of the TFS formalism, namely, the feature appropriateness condition. This will be of particular 
interest to those interested in the application of the present work to other feature structure for-
malisms which do not adopt the condition. 

Consider that, as presented thus far, array storage does not present a practical solution to the 
feature arity problem described in Section 2.2.3. An expression of the form 

 σ𝑚𝐹=𝑚(𝔸), (2.58) 

while succinct for formal presentation, implies, for every node access, an exhaustive enumera-
tion of every tuple in 𝔸, clearly an unsupportable operational mode. As a reminder, in this ex-
ample it does not suffice to stop the enumeration after finding the first match, because although 
the collection of in-tuples 〈𝑓𝑓,𝑚𝑚𝐹𝐹〉 taken alone is distinct, when considering only 𝑚𝑚𝐹𝐹 there may 
be multiple satisfying tuples. This is as desired, of course, for these represent the zero or more 
feature-value tuples of a node. 
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A key point, however, is that the collection of in-tuples, taken as a whole, is distinct. In section 
3.2.4, I explain that the implemented design hashes 𝔸 on 〈𝑓𝑓,𝑚𝑚𝐹𝐹〉. For the current discussion, 
suffice it to note that 𝑂(1) retrieval can only be obtained via expressions of the form 

 σ�𝑓�𝑚…(𝔸). (2.59) 

Considering this, it is apparent that we need to add feature hints to the node reconstitution ex-
pression developed previously. 

Recall that the set of features appropriate for type 𝑡𝑡 is an invariant property of the grammar, 
given by Approp(𝑓𝑓, 𝑡𝑡). From the start, the design of array storage has intentionally incorporated 
intrinsic, as-given reliance on this feature appropriateness condition, and here we see why. 
Without a short list of features to pair with a node’s mark 𝑚𝑚—forming 〈𝑓𝑓,𝑚𝑚𝐹𝐹〉 tuples—and to 
then try, in turn, as hashable queries, array storage has no practical means of node retrieval. 
Naturally, that short list of features is the set of features that are appropriate for the node type. 

From the previous section, we know that the out-tuple containing a node’s type and mark—
which, as an opaque entity, might be considered the array storage simulacrum of a node point-
er—is explicitly passed down from a higher call frame. By this means, the node type is availa-
ble for obtaining a list of appropriate features. Also at hand is the node’s mark, for recovering 
the node’s feature-value pairs. For convenience, give this externally-provided out-tuple 
〈𝑞𝑚. 𝑡𝑡, 𝑞𝑚.𝑚𝑚〉 the alias 〈𝑡𝑡̅,𝑚𝑚〉. We are now ready to give the general expression for array stor-
age retrieval of node 𝑞𝑚: 

 𝑞𝑚 = 〈𝑡𝑡̅,𝑚𝑚, ⋃ σ(𝑓=𝑓′) ∧ (𝑚𝐹=𝑚)(𝔸)
𝑓′ ∈ FEAT, 𝑓′:Approp(𝑓′,𝑡)↓

〉. (2.60) 

With the exception of employing logical conjunction as a stand-in for 〈𝑓𝑓,𝑚𝑚𝐹𝐹〉 hashing, this 
expression now conveys a sufficiently accurate representation of the implemented storage 
method. Applying the transformations demonstrated in (2.41)-(2.44), we can express the fea-
ture-value pairs as relation 𝐴 ⊆ 𝔸: 

 𝑞𝑚 = 〈𝑡𝑡,𝑚𝑚,𝐴〉. (2.61) 

Processing the feature-value pairs in 𝑞.𝐴 is generally a task-specific concern which is peripher-
al to this exposition. A thorough example can be found in the presentation of array storage uni-
fication in Section 4.4. To conclude this section, then, it should be sufficient to note that the 
process described in this section can be continued with the zero or more out-tuples formed by 
〈𝑎.𝑡𝑡,𝑎.𝑚𝑚𝑇𝑇〉, for each 𝑎 ∈ 𝑞.𝐴. 

The original system design prohibited storing an out-tuple with type ⊤ (unless coreferenced, in 
which case it is has a negative mark value [Section 3.2.3]). The original intention of this design 
was to reduce the size of TFSes representing unexpanded type definitions, which tend to be 
sparsely constrained. With expanded TFSes from realistic grammars, actual space savings is 
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limited. Although array storage balks at storing out-tuple 〈⊤, 0〉, this is precisely the out-tuple 
which is returned for any 〈𝑓𝑓,𝑚𝑚𝐹𝐹〉 query for which no data is found. This is generally desirable 
behavior, as it automatically gives every node the appearance of a full set of appropriate fea-
tures, albeit unconstrained. In reality, these identities are chimeric, for the unconstrained out-
tuple 〈⊤, 0〉 is also happily returned for features which could never be appropriate for 𝑞. Array 
TFS storage strongly promotes feature appropriateness as the recommended retrieval vehicle, 
but in fact, array storage is agnostic to feature appropriateness. It falls to the caller to record 
out-tuples only for features which are appropriate for the node type; otherwise, later callers 
may have no efficient, systematic way to discover them.  

In summary, although in principle the set of attribute-value pairs selected by a node can be re-
covered by exhaustively searching 𝔸, this would be prohibitively inefficient. Appropriateness 
of 𝑓𝑓 for 𝑡𝑡 is a property of the grammar which—while technically extraneous to the array stor-
age description—plays a critical role in a practical implementation. Accordingly, pairs are 
enumerated by querying only those features which are appropriate to a node’s type. Although 
essential to efficient operation, the association is neither stored within nor referenced by the 
storage component and must be externally obtained. 

2.4 Summary 
This chapter began by reviewing established approaches to the formal description of typed fea-
ture structures, contrasting two quite dissimilar conceptions. Next, motivating considerations in 
the design of TFS storage systems were discussed. The chapter concluded with the formal de-
scription of a new mode of TFS storage, in which a single, independent monolithic tabular al-
location holds all of the nodes for each “TFS,” here taken to refer only to top-level structures 
which undergo (meta-)operational manipulation. Although the formal description borrowed 
notation from the relational algebra, the intended implemented form for an array storage TFS is 
a simple block of process memory. The details of an implementation of the scheme are provid-
ed in the next chapter.  
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3 Array TFS storage implementation 
This section describes the implementation of the array TFS storage system which was formally 
described in the previous chapter. The method amounts to a specialized storage and retrieval 
abstraction over system memory. The demonstration harness, agree, is a new grammar engi-
neering platform developed as part of this research. agree is implemented as an ECMA-335 
Common Language Infrastructure (CLI)27 application, and key aspects of the array TFS stor-
age design were informed by engineering considerations related specific features and limita-
tions of this environment; these will be discussed in this chapter. 

Section 3.2 presents specific details of the array TFS storage implementation. Section 3.3 pro-
vides example representations of linguistically motivated TFSes stored in the new array form. 
Lastly and within the context of ongoing research, Section 3.4 describes an alternate to the 
hashing method currently used by the array TFS storage implementation; this section includes 
the results of preliminary analyses of the concept as it would manifest for the English Resource 
Grammar (Flickinger 2000). This approach, based on modulo division, shows potential as a 
faster, more compact solution to the feature arity problem.  

3.1 Managed-code 
While offering numerous advantages for rapid development of large-scale software projects, 
the “managed” CLI poses unique performance challenges. Automatic garbage-collection, a 
boon for design convenience, may require the introduction of a penalizing shim layer between 
every user-defined entity (“object”) in the system and its physical representation. These extra 
headers consume a few bytes of extra space per object, but more importantly, may impose ad-
ditional memory indirection each time an object is referenced. 

The key observation is that engineering options are fewer—and thus extra care is required—
when seeking the highest possible performance within managed programming environments. 
This was the experience of this project. Several storage schemes were investigated—and aban-
doned—before arriving at the configuration presented in this thesis. The CLI provides very 
few mechanisms for departing from its canonical paradigm; inevitably, the system design pre-
sented here is intrinsically tied to the specifics of the particular patterns, which are very limited 
in number, that enable extreme performance. This is not to say that the design of array TFS 
storage is fully implied by the constraints of its target platform, nor that any system which ap-
proximates the performance of the demonstration system within the CLI must be using the de-
sign described in this thesis. Rather, I am suggesting that when high performance is critical, 
there is a considerable reduction—relative to native-code programming—in the number of 
fundamental engineering abstractions that remain available for consideration. 

                                                   
27 European Computer Manufacturer’s Association (ECMA), Common Language Infrastructure (CLI), 5th Edition (De-
cember 2010).  http://www.ecma-international.org/publications/standards/Ecma-335.htm 
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Most notably, in the CLI, the array is the only managed object that provides the requisite flex-
ibility. CLI arrays are distinguished with first-class recognition as internal primitives with spe-
cial properties. Dedicated instructions in the intermediate language (IL) provide index-based 
access to the (obligatorily homotypical) array elements, which are internally allocated as a con-
tiguous block of memory. The number of elements in a CLI array (which can be zero), along 
with the single designation of their strong type, are permanently fixed when the array is creat-
ed. 

Were a CLI array limited to containing a contiguously allocated collection of (strongly-typed) 
references to garbage-collected objects, this thesis research could not exist in its current form. 
It would be extremely cumbersome to avoid per-node allocation and difficult to achieve ade-
quate performance. Fortunately, the CLI platform allows certain types of managed array, under 
specific conditions, to be treated as simple variably-sized blocks of unsupervised virtual 
memory. The platform supports the declaration and instantiation of user-defined value-types, 
which circumvent the garbage collection mechanism (at the expense of referential equality) by 
everywhere exhibiting by-value semantics. Moreover, when used as array elements, the value 
type imposes an overlaid tuple structure on the underlying managed memory at no cost. This 
relatively obscure capability, without which an efficient managed implementation of array TFS 
storage would be impossible, is discussed in the next section. 

3.1.1 Value types 
In some managed languages, such as Java, arrays of user-defined types are always arrays of 
object references. Only in arrays of the built-in scalar primitives, such as integer, float, Boole-
an, etc., are the elements deployed by value in situ. Fortunately, C#—the CLI language used in 
this project—supports arrays of user-defined value types. A value type is a user-defined tuple 
prototype (or, when the term is used informally, an instance of the same) that manifests an al-
tered semantics wherever it occurs or is manipulated. The mechanism is triggered by tagging 
the tuple declaration with the struct—as opposed to the class—language keyword (3.1). Val-
ue type instances receive a host of special treatments. The key semantic difference is that as-
signing a value type instance always causes its bitwise layout to be copied, a semantics re-
ferred to as by-value. Like the primitive scalars, they never share state with other instances and 
thus the notion of referential equality is undefined for these entities.28 Additional examples of 
‘value type semantics’ are that the type declarations for value types cannot express inheritance 
(although they can implement interfaces), and that their fields can be used without initializa-
tion (3.3) (although the runtime still zeros-out their memory for security reasons; see Section 
4.4.3). 
                                                   
28 As will noted in the next section, pointers can be used in C#, and thus a concept of referential equality—i.e. equality of 
physical location—can be foisted on value types. The end can also be rudely achieved via the ‘StructLayoutAttrib-
ute/LayoutKind.Explicit’ construct, which can permit (C-style) unions to be formed, but neither of these treatments im-
parts a notion of reference equality on the value types themselves. Curiously, there is such a notion in the CLI itself—so 
called ‘managed pointers’—but the capability is not exposed in the C# language. One language that provides access to 
this mechanism is Microsoft’s C++/CLI, a version of the C/C++ programming language which targets the CLI. 
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 struct VT         // the struct keyword declares a value type 
{ 
    public int f; 
    public int m_F; 
    public int t; 
    public int m_T; 
} 

(3.1) 

 VT vt;           // vt is a local instance of value type VT on the stack (3.2) 
 vt.t = 3;        // fields of vt can be assigned without initialization (3.3) 
 vt = new VT();   // this is one way to (re-)initialize an instance (3.4) 

Despite the vastly altered semantics, value type instances can be created in the same way as 
normal objects, by using the new keyword (3.4). This is an unfortunate conflation, because val-
ue type instances are essentially never29 independently allocated within the garbage collected 
heap, which is what new implies to many programmers. It may help to think of a value type 
declaration as an overlay on some piece of memory. As a local variable or function argument, 
a value type instance is overlaid on a portion of the stack frame. As a member of a managed 
object, it is laid out, in situ, within a managed object. And as an array element, zero or more 
value type instances are laid out adjacently, in sequence. 

To avoid excessive memory shuffling in a regime of by-value assignment, value types, when 
handled as standalone instances, are best indicated for cases of small tokens of no more than a 
couple dozen bytes. Significantly for the present work, however, declaring an array of value 
types does not devolve into an array of boxed value type references.30 Rather, the declaration 
results in a true array, where a single, contiguous block of memory contains by-value images 
of each instance, adjacently and in sequence. This means that an array of value types subsumes 
a (relational algebra) relation, where individual fields of zero or more homotypical tuples are 
accessible by range and property name. Of course, being memory-resident constructs, these 
arrays enable capabilities beyond those defined for relational algebra tables, for example, the 
trivial, direct access of individual tuples via index values particular to the physical storage or-
der. 

Use as array elements licenses the declaration of value types larger than the practical limit 
mentioned above; in the role of an array element type, a value type is simply a property-
naming template which is repeatedly overlaid on the array’s memory, and its fields—rather 
than its contents as a whole—can be written to, and read from, where they lie. This use of val-
ue types as patterning templates incurs no operational cost at runtime, and largely serves as a 
convenience to the developer. However, in working within this system, the programmer must 
be keenly aware of the altered semantics, so as not to accidentally make any direct reference to 
the stored instances. Doing so invokes by-value semantics, of course, resulting in the (possibly 
oversized) tuple being (unintentionally) copied out of the array. 

                                                   
29 Boxing is the exception; see footnote 30. 
30 Boxing allows a value type to be transported by reference (i.e., by persisting in the heap), but by-value semantics still 
apply: the “unboxed” value type, once recovered, shares no state with the source instance.  



41 
 

To illustrate, recall value type declaration (3.1) . Each instance of this tuple is 16 bytes, so the 
value type array rgvt (3.5) represents a single allocation of 16,000 bytes. Note that the man-
aged array of value types itself is a normal garbage-collected object; the value type simply or-
ganizes its internal fine structure. Accordingly, each array storage TFS can be considered an 
independent, miniature heap which implements a specialized, domain-aware (because it capi-
talizes on the grammar’s type-appropriateness condition) addressing scheme. 

Naturally, the size of a managed array—which, once set, becomes permanently fixed—can be 
late-bound, at runtime. In (3.6) and (3.7), respectively, an integer is stored in the field 𝑓𝑓 of the 
𝑖𝑡ℎ tuple in rgvt, and then retrieved. This demonstrates direct, efficient access. On the other 
hand, (3.8) is not only inefficient, but probably incorrect with regard to the likely intention. By 
assigning the 𝑖𝑡ℎ array tuple to the local value type instance vt, the entire 16-byte entity is im-
aged into the local stack frame, where it no longer has any connection with its array source. 
Furthermore, the lack of referential equality means that assigning a value to field 𝑓𝑓 will have 
no effect on the persistent array data. Only the local entity vt, which will expire with the stack 
frame, is altered. 

 VT[] rgvt = new VT[1000]; // a managed array of value types (3.5) 
 rgvt[i].f = 1;            // efficient in situ property access (writing) (3.6) 
 int f = rgvt[i].f;        // (reading) (3.7) 
 vt = rgvt[i]; // probably not intended: value types manifest by-value assignment 

vt.f = 1; 
(3.8) 

Absent value type arrays, efficiently accomplishing the array storage scheme described in this 
thesis would require allocating each of the four properties of the 4-tuple relation as a separate 
array of primitive types. Each TFS would comprise four allocations instead of just one, and 
programming access in the language would be clumsier. In addition, the fragility of the overall 
system would increase by the requirement to operationally enforce tuple consistency across 
disjoint arrays. With the value type array, this is not a concern; obviously, if a tuple is a single, 
bound entity, it is impossible for it to become crossed with another.31 

3.1.2 Direct access 
The C# language also permits so-called unsafe access to primitive data, using C-style pointers, 
as shown in (3.9). Access to the entire memory block which comprises a value type array is 
also permitted. This means that, under controlled conditions, C# code can freely range over 
proscribed memory areas using native pointers. Strict limitations are enforced so that the guar-
antees of the managed environment—in particular, pertaining to type safety and garbage col-
lection—are fully preserved. In a nutshell, the limitations amount to the prohibition of unman-
aged access to managed references. There is also a mechanism, shown in (3.10), for accessing 

                                                   
31 Of course, with concurrent editing by multiple threads—and with a value type whose total size is larger than the pro-
cessor’s native integer size—reading multiple fields of a value-type (which is) can still result in a “torn-read.” This term 
describes the situation where one thread witnesses inter-field inconsistencies that arise due to non-atomic updating activi-
ties of another. In the current work, this possibility is ruled out by treating each TFS’s storage array, once initialized, as 
read-only.  
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(permissible) fields directly within managed objects. The fixed keyword establishes a scope 
block within which direct manipulation of the entire array with C-style pointers is permitted, 
even though the array itself is a managed heap object. 

 VT* p = &vt;     // trivially, the address of a stack instance can be taken 
p->t = 3;        // C-syntax is used for pointers 

(3.9) 

 fixed (VT *pvt = rgvt)   // explicit pinning of the managed array from (3.5) 
{ 
    pvt[10].f = 5; 
} 

(3.10) 

A question is, why should this approach be used instead of the normal access mode illustrated 
in (3.7)—after all, value type array rgvt is itself a managed object? The answer is that (3.7) is 
actually a lighter-weight mechanism whereby the runtime environment automatically pins 
down the array for the duration of a single access.32 To manually pin a fully-blown managed 
object—such as a CLI array—so that its internal fields can be directly accessed requires the 
explicit syntax of (3.10).33 A summary of what is permitted when using pointers in C# is that, 
regardless of whether it points into the layout of a managed object, into a managed array, to a 
field within a value type, or to the stack, everything accessible to an unsafe pointer must in-
clude no managed object references. 

Earlier in this research, I hoped that agree could be developed to adequate performance with-
out appealing to the unsafe manipulation of value types. Eventually, I had to suspend this dik-
tat for parts of the array storage system that were performance-critical. To retrieve a relation 
entity, the unsafe version pins 𝔸—yielding a pointer to its base address—and then maintains 
the pinning whilst navigating the hash tables, all using direct access and C-style pointer arith-
metic. However, I found that even carefully tuned unsafe code that uses explicit pinning (3.10) 
is sometimes outperformed by managed array access, for which the environment itself can use 
lightweight, automatic pinning (3.7). For the most critical parts of the array storage system I 
experimented with hand-crafted IL34 code, which can exploit the best of both worlds—
automatic pinning and hand-crafted optimization—and this code does outperform canonical 
access. 

Beyond array storage itself, the array storage unifier also heavily embraces speedy pointer-
based access. Section 4.4.3 details how the unifier’s scratch fields can be instantiated as an ar-
ray of value types on the stack. This technique relies on another unsafe facility of C# that has 
not yet been mentioned. With restrictions, the language allows for stack-based arrays. With 
these so-called stackalloc allocations (3.12), an amount is subtracted from the current thread’s 

                                                   
32 The way this works is that the garbage collector will examine the stack, looking for special invisible local variables that 
are specially marked for pinning. Merely placing an object reference in one of these local variables instructs the garbage 
collector not to move the object. The condition can be proactively canceled (i.e. prior to the function returning) by storing 
a null reference in the special local variable. Otherwise, it becomes moot when the frame expires. 
33 In yet another pinning technique—not used in agree—a managed object can be explicitly pinned for an arbitrary dura-
tion, including across function boundaries. 
34 IL—intermediate language—refers to the synthetic intermediate byte code that is produced by a ECMA-335 compiler. 
The runtime environment’s just-in-time compiler converts IL to native instructions upon first use. 
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stack pointer to reserve a region of unmanaged memory on the stack that can only be accessed 
with unsafe pointers.35 Importantly for agree’s purposes, the size of the stack allocation can be 
late-bound (determined at runtime); the point is illustrated by (3.11) and (3.12). 

A value type can be used as the element type in stackalloc arrays. As noted, this technique—
including its ability to accommodate a late-bound size—was tested in some versions of the ar-
ray storage unifier presented in Section 4.4 of this thesis. As before, the value type specified as 
the type of the array element may not contain any object references. 

 int cb = 1000; (3.11) 
 VT* pvt = stackalloc VT[cb]; (3.12) 
 (*pvt).rgi[10] = 5;             // store an integer value in the 9th element (3.13) 
 pvt->rgi[10] = 5;               // store an integer value in the 9th element (3.14) 
 *(pvt->rgi + 10) = 5;           // pointer arithmetic can be used (3.15) 

Finally, with another use of the fixed  keyword—a use unrelated to (3.10)—C# offers the even 
more obscure ability to instantiate an entire unmanaged array, by value, within a value type, as 
shown in (3.16). In this case, only the scalar primitives—and not user-defined value types—are 
permitted as the element type, and the number of elements may not be late-bound. These limi-
tations limit the utility of the feature, but nevertheless, it was used in the n-way unifier (Section 
4.3). Since the time that code was retired, agree no longer uses fixed unsafe buffers. 

 struct VT2 { public fixed int rgi[20]; } // 20 integers, in situ in a value type  (3.16) 

3.2 Engineering 

3.2.1 Root out-tuple 
In array TFS storage, the root out-tuple of each TFS is not stored in the main storage relation 
𝔸. The decision to store the root out-tuple separately followed from the idea that 𝑞̅ should not 
be bound to an in-tuple. This idea, in turn, was adopted because it enforces the notion that a 
TFS represented in array form does not represent the substructure of some other TFS. Since 𝑞̅ 
is the (exactly) one node in 𝐴 which is not paired with an in-tuple, it is impossible to specify a 
feature “arc” which leads to 𝑞̅. Because each TFS 𝐴 is essentially a private address space unto 
itself, substructure above its root is either an undefined notion, or entails a cycle. 

A potential consideration might have been that deploying a distinguished out-tuple in 𝐴 would 
result in an additional system-managed allocation, but because out-tuples are represented as 
value types, this is not an issue. As discussed in Section 3.1.1, the value type is laid-out in situ 
within 𝐴, so excess allocation is not a factor in the design decision. Ultimately, the separate-
root design was chosen for the formal rigor it enforces, but the design did later present an un-
foreseen practical drawback, namely, that a set of unifier scratch fields (called a unifier scratch 
slot) for the root must always be set aside by the unification algorithm, a point that will be pre-

                                                   
35 I hesitate to describe these as ‘arrays’ here, because these stack-based allocations are unrelated to normal managed 
arrays, which always exist in the garbage-collected heap. 
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sented in Section 4.4.2. Of course, the adjustment always amounts to exactly one extra slot per 
TFS, which is easily arranged. 

On the other hand, the design does degrade nicely when storing a TFS 𝑁 whose root type 𝑡𝑡𝑁 
has no appropriate features. Modeling these structures is important because it is desirable, in 
some cases, to consistently assume that every type in the type hierarchy proffers an (expanded) 
feature structure which represents its constraints. The array form of 𝑁 has distinguished root 
tuple 𝑞̅ = 〈𝑡𝑡𝑁, 0〉 and storage relation 𝔸 = ∅. An example is shown as Figure 8 on page 50. 

It is not permitted for the root node of any TFS be coreferenced—since this would necessarily 
introduce a cycle—so the out-mark value stored in the root node is normally a positive—in 
practice, the value 1. Currently, the only exception to the root out-mark having the value 1 is 
for the array TFS storage instances which represent the expanded constraint for a type with no 
appropriate features. In this case, the number of 4-tuple rows is zero, and the TFS consists of 
just a root out-tuple, which will then have a mark value of zero. 

3.2.2 4-tuple layout 
This section briefly describes the engineering implementation of the 4-tuple relation 

 𝑎𝑖 = 〈 𝑓𝑓,𝑚𝑚𝐹𝐹, 𝑡𝑡,𝑚𝑚𝑇𝑇 〉. (3.17) 

In the current implementation, each property is a 32-bit integer, so each tuple is 16 bytes 
wide.36 This means that a typical TFS of around 600 nodes occupies around 10,000 bytes of 
memory, all told. The sets of features FEAT and types TYPE are fixed aspects of the grammar, so 
individual features and types are selected by integers which are permanently assigned when the 
grammar loads. 

Using a 4 byte integer for each member of the 4-tuple is wasteful. In particular, the use of 32 
bits for identifying a feature means that realistic grammars use less than one millionth of one 
percent of the available range. Revision 10342 of the ERG uses only 206 distinct features, so 
using 16-bit integers for 𝑎.𝑓𝑓 would pose no overflow danger. 

As for the mark values, with the English Resource Grammar, ample headroom is still available 
with 𝑎.𝑚𝑚𝐹𝐹 and 𝑎.𝑚𝑚𝑇𝑇 at 16 bits. Since each TFS has its own domain of marks, this would limit 
each TFS to around 60,000 nodes. A brief analysis follows. Although there is little reason to 
disable rule daughter (ARGS) deletion during parsing—except perhaps for debugging—this limit 
can be approached in that artificial scenario. I suspend for a moment the question of whether 
such a large structure could be produced in a reasonable amount of time. Still assuming no 
ARGS deletion, a binary branching grammar, and an average rule TFS size of around 500 nodes, 
the length of a sentence corresponding to a TFS with 60,000 nodes is about 
                                                   
36 Rather than introduce additional notation to distinguish feature- and type-identifier integers from features and types 
themselves (as conceived within the grammar), this thesis uses 𝑓𝑓 and 𝑡𝑡, respectively, for both. Where the distinction is 
not immaterial to the presentation, it will be noted.  
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 2(log2(
60000
500 +1)−log2 2)/ log2 2 ≈ 60 (words). (3.18) 

Unrelated considerations (namely, the inherent complexity of parsing) render the analysis of 
sentences of this length (with realistic grammars) intractable, so, for the time being, 60,000 
nodes is an acceptable limit for the number of nodes in a single TFS. 

In agree, the type integer 𝑎.𝑡𝑡 incorporates the most intricate structure. As stored in array TFS 
storage, the type identifier value is stored in the low-order twenty-seven bits. The remaining 
bits—the upper five bit positions—are flag bits whose functions are summarized in Table 1. 
The top type ⊤ in 〈TYPE, ⊑〉 receives special treatment. For all grammars, it is always assigned 
a type identifier of zero. The flag bits are polarized such that a value of zero for the integer as a 
whole reflects the correct state for non-coreferenced ⊤. 

purpose high 5 
bits description ERG 

count 
coref 1___0 Coreferenced. Bit is set if the TFS node has more than one path leading 

to it. 
n/a 

leaf _1__0 Leaf. Bit is set if the type is a leaf type. This is used to optimize type 
unification. 

3,003 

appf __1_0 Bit is set if the type has appropriate features. Used to optimize TFS tra-
versal, including by the unifier.  

5,915 

type ___00 Non-string type 8,019 
string ___10 Special string type.  1 
string 
value 

_1010 The low 27 bits indicate a string from the grammar’s table of strings. 
String identifiers are assigned when the grammar loads. 

46,832 

skolem _1011 The low bits indicate a Skolem constant used in tactical realization. ~30 

Table 1. High-order bit flags encoded in type identifier 𝒂.𝒕. The low 27 bits indicate a type from the grammar’s type 
hierarchy or a string identifier. Each type is assigned an identifying integer when the grammar loads. The identifier val-
ues are assigned according to a topological order on 〈TYPE, ⊑〉 such that 𝒕𝟎 ⊏ 𝒕𝟏 → (𝒊𝒅)𝒕𝟎 < (𝒊𝒅)𝒕𝟏, a property that is 
heavily exploited by the unifier implementation, which gives it an asymmetrical form. The order enables the trivial (and 
obligatory) alignment of the more subsumed type (putatively—since this is prior to the actual type unification calcula-
tion) with a designated unifier function call position. Several code paths within the unifier are eliminated by entailment. 
For example, in the latest code (where the unifier never conceives new structure, and instead describes the result structure 
via scalar forwarding between input structures alone) is streamlined when it can explicitly refer to the input which will 
ultimately be chosen as the forwarding representative (viz., the more derived type, or the greater-valued type identifier). 

The high bit of 𝑎.𝑡𝑡 indicates a coreferenced node. For historical reasons, this information is 
redundant with the out-tuple’s mark being negative. In fact, coreferencing is indicated by the 
same bit position (the most significant bit) in both 𝑎.𝑡𝑡 and 𝑎.𝑚𝑚𝑇𝑇. It is an error for these to ever 
be inconsistent in any out-tuple. 

Bit 30 always accurately indicates whether the type has any appropriate features. Because ar-
ray storage mandates close coordination with the grammar’s appropriateness condition, this 
flag is a powerful optimization used in every graph traversal. It is pervasively referenced 
throughout agree. 
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Summarizing the overall bit consumption of array storage entity 𝑎, 𝑎.𝑡𝑡 legitimately needs at 
least twenty bits, so it would be reasonable to continue to use a 32-bit integer. Combining this 
with the analysis of the other fields in the 4-tuple, we see that the current width of 16 bytes 
could comfortably be recast with only ten bytes: 

 𝑓𝑓 (16) + 𝑚𝑚𝐹𝐹 (16) + 𝑡𝑡 (32) + 𝑚𝑚𝑇𝑇(16) = 80 bits = 10 bytes. (3.19) 

Unfortunately, a record size of ten bytes is not too alignment-friendly. Whether the memory 
savings outweigh the penalties for accessing unaligned fields is a question for further empirical 
study.  

3.2.3 Mark assignment 
As an operational convenience, a negative integer is assigned as the out-mark for any node 
〈𝑡𝑡,𝑚𝑚𝑗〉 where 𝑚𝑚𝑗 has more than one appearance as an in-mark. This indicates that 〈𝑡𝑡,𝑚𝑚𝑗〉 is a 
coreferenced node, that is, a node which can be reached by more than one other node. Corefer-
enced nodes select their attribute-value pairs in the same way as non-coreferenced nodes, ac-
cording to equality of their out-mark with a set of zero or more in-marks. 

Therefore, negative mark values always have more than one occurrence amongst the in-tuples 
relation 𝔸�𝑁. This is the set of reentrancies to that coreferenced node. Every out-tuple in the 
array TFS which has a particular negative value as its out-mark must share the same type value 
𝑡𝑡. If this requirement—or if the requirement that there be more than one such node—is violat-
ed, the array TFS is corrupt, and this signals not any linguistic condition, but a programming 
error. 

As for non-coreferenced nodes: if a type has no appropriate features—a condition indicated by 
a special bit in the type-identifier integer—its out-mark will always be zero. It follows that any 
mark value greater than zero is guaranteed to occur in only a single out-tuple. That node’s fea-
ture-value pairs are found by iteratively pairing the mark with each of 𝑡𝑡’s appropriate features 
and querying with each resulting key. Conceptually, the out-mark matches with zero or more 
in-tuples, which identify the node’s substructure: its feature-value pairs. Coreferenced nodes 
work the same way, if they have appropriate features. This is illustrated with an example in 
Figure 11 in Section 3.3. ⊤ nodes do not need to be explicitly stored unless coreferenced, be-
cause the storage system returns ⊤ in reply to any failed query.37 For coreferenced ⊤ nodes—or 
in fact any logically coreferenced node, regardless of whether its type has appropriate fea-

                                                   
37 Historically in agree, attempting to store 〈⊤, 0〉 was flagged as a fatal error. In recent work, this aspect of the design 
has been altered, with the ultimate result that the unifier’s fallback fetch mechanism, described in section 4.4.8, also be-
came unnecessary. The minimum required condition was to ensure that the canonical expanded TFS for every type in the 
grammar manifest root coverage, meaning that its storage layout necessarily include a row for every feature appropriate 
to its root type (at a minimum), regardless of whether the feature is constrained. When combined with the formalism’s 
well-formedness requirement, doing so guarantees that any result TFS can be described by a patchwork formed exclu-
sively from the input arguments’ storage layouts. Because the unifier—which co-opts these layouts—can always elect to 
incorporate the well-formedness TFS before unifying the actual argument nodes, this assures the unifier that a full com-
plement of scratch slots will be available for any type it could possibly encounter. 
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tures—a negative out-mark must be stored so as to record the logical equivalence of the multi-
ple storage representations.  

To achieve the highest performance, formal correctness of array storage is asserted only in the 
context of a cooperative contract between the storage system itself and the storage consumer. 
An example was already given wherein the canonical access paradigm necessitates reference to 
the grammar’s feature-appropriateness condition, which is entirely outside the purview of the 
storage component. Additional conditions must be operationally observed by the storage con-
sumer. First, marks must be assigned such that 𝔸�𝑁 is distinct, in order to prevent the uninten-
tional conflation of nodes. Out-tuple 𝑚𝑚𝑗 necessarily recurs when 𝑚𝑚𝑗 < 0, but all occurrences 
must consistently record the same type 𝑡𝑡. So a second condition is that no TFS may contain out 
tuples 〈𝑡𝑡,𝑚𝑚〉 and 〈𝑡𝑡′,𝑚𝑚〉 where 𝑡𝑡 ≠ 𝑡𝑡′. 

It is also clear that, within the same 4-tuple, if the in-mark equals the out-mark, a cycle is de-
scribed. Although the DELPH-IN joint reference formalism does not permit cycles, there is 
nothing inherent in array TFS storage which precludes them. Therefore the detection and pro-
hibition of cycles is not the responsibility of the array storage system.38 Finally, in any out-
tuple where 𝑡𝑡 has no appropriate features, 𝑚𝑚𝑗 will be zero, and this, in turn, entails that no in-
tuple may ever exhibit 𝑚𝑚𝑖 = 0. 

3.2.4 Hash access 
Access is the heart of array storage, and is obviously the most performance-critical aspect of 
agree. For 𝑂(1) access, the 4-tuples in 𝔸 are hash-indexed by in-tuple 〈𝑓𝑓,𝑚𝑚𝐹𝐹〉, which is a 
range-complete projection of 𝔸. In other words, the set of in-tuples in 𝔸 is distinct: 

 | 𝜋
𝑓, 𝑚𝐹

𝔸| = |𝔸| (3.20) 

Abetted by a feature-appropriateness lookup, this hash key form permits the complete set of 
attribute-value pairs corresponding to a particular in-mark to be quickly recovered, in accord-
ance with (2.60). The array storage scheme is itself agnostic about feature appropriateness; it 
will gracefully return out-tuple 〈⊤, 0〉 for any 〈𝑓𝑓,𝑚𝑚𝑇𝑇〉 tuple for which no constraint is stored. 

Hashed fetching of a single 4-tuple 𝑎 according to its in-tuple 〈𝑎.𝑓𝑓, 𝑎.𝑚𝑚𝐹𝐹〉—supplemented with 
the ability to return 𝑎’s storage index (later given as 𝑎.𝑖𝑥)—is the only operational mode sup-
ported by array storage, and it is sufficient for all of agree’s grammar processing tasks, includ-
ing expansion of the type hierarchy, unification, parsing, and generation. 

It bears repeating that array storage does not maintain any index over a TFS’s out-tuples, so the 
node type governing a given mark is not readily retrieved. As discussed at the end of Section 
2.3.2, such a design delegates to the querying party the responsibility for enumerating only the 

                                                   
38 Only tiny cycles such as the one mentioned here are detected “for free” by the storage system. Therefore, a comprehen-
sive approach to cycle detection, if needed, may properly lie beyond the scope of node storage and retrieval. 
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appropriate features for a node, and this further implies knowledge of the node’s type. In prac-
tice, this is never a problem, since—to prime the process—the root type of the TFS is explicit-
ly available (it is explicitly stored, separate from 𝔸), and from that point on, it is natural and 
trivial for code that recursively traverses a TFS to privately maintain the information needed to 
build the hash keys of interest. 

Hashing requires that each entity 𝑎𝑖 ∈ 𝔸 be augmented with a ‘next’ field, which implements a 
singly-linked list of tuples whose hashes collide. In the implementation evaluated here, this is a 
managed CLI array 𝐻ℤ  of scalars 〈ℎ〉(ℤ)  which is allocated adjunct to 𝔸 such that | 𝐻ℤ | = |𝔸|. 
The inelegance of this disjoint storage approach was justified by a few factors. Chiefly, con-
trolled evaluation of the 5-tuple plan against the 1/4 disjoint plan was decisive in favor of the 
latter, a result that I attribute to better alignment. If each field in 4-tuple 𝑎 is 32-bits, or four 
bytes, then the 4-tuple is 16 bytes in total, which is obviously an alignment-friendly figure. On 
the other hand, packed alignment of 5-tuples (20 bytes each) causes every alternate storage re-
lation to be misaligned for 64-bit (8 byte) access. 

Because n-way unification (Section 4.3) is no longer the primary unification engine in agree, a 
second factor which influenced allocating the ‘next’ field as an adjunct array is no longer rele-
vant. The issue is nevertheless interesting. The n-way procedure is able to determine when 
each node in the result TFS becomes definitive, so it makes sense for that algorithm to directly 
produce each nearly-complete 𝑎 record at that time. However, because unification may fail 
later on, it is not wise to go so far as to allocate the final CLI array. In any case, n-way unifica-
tion does not know the required size for such an array until its single pass completes. Instead 
the 𝑎 records are imaged to n-way’s topmost stack frame. Before starting n-way unification, 
the method calculates the worst-case maximum number of tuples that could possibly occur in 
the result TFS, and obtains an incubation buffer of this size. It is this estimation procedure that 
influenced the decision to keep the array storage tuple 𝑎 compact: the estimate is always in 
vast excess. The estimate is then multiplied by the byte size of each entity to get the size of the 
stack allocation. 

In addition to associating a ‘next’ field with each entity, each TFS has a dedicated table of ini-
tial hashes, ℍℤ . As with 𝐻, this is a relation of entities 〈ℎ〉(ℤ) . ℍ is used to abstract the physi-
cal storage order from the hashing mechanism, which allows the unifier to privately prepare 
the CLI array 𝔸, adding records in arbitrary order and without concern for hash collisions. It 
then transfers the completed array to array storage, which trivially (i.e., by reference) installs it 
in the TFS. There is no opportunity in this procedure to rearrange records so that they are 
stored at their initial hash index—or added to the collision bucket of the record that is already 
there. ℍ provides the mechanism for each tuple 𝑎𝑖 ∈ 𝔸 to be hashed regardless of the physical 
array index at which it happens to be stored. 
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Within this basic setup, I evaluated the performance of several hash function variations. The 
results are instructive, possibly illustrating complex interactions between orthogonal factors. 
For example, further research along these lines might seek to isolate differences which are due 
to a specific set of feature- and type-identifier value assignments. A related research program is 
described in Section 3.4. Also requiring further investigation are issues of which hash function 
yields the most efficient IL instruction sequences—or which of these sequences is then ren-
dered most efficiently by the 64-bit JIT compiler. As one of the very few parts of the system 
which lies below the unifier, the storage hash described here is performance critical, so these 
issues merit close scrutiny. 

Table 2 gives results for the best-performing of the hash functions that were considered across 
multiple scenarios. The function that has performed the best, regardless of |𝔸|, uses a table of 
2� = 256 initial hashes and the trivial hash function 

 (2� − 1) & (𝑓𝑓 + 𝑚𝑚𝐹𝐹). (3.21) 

What is surprising about this result is that, parsing with the English Resource Grammar (Flick-
inger 2000), TFSes are produced in a size range of about 400-1200 nodes. With only 256 ini-
tial hashes, the bucket load is high, which can translate into up to five expensive list traversal 
operations per query. The explanation must be that the processor instruction for loading a byte 
from a 32-bit integer—which replaces, for example, modulo division for clipping the comput-
ed value down to the size of the hash table—is much faster than doing modulo division with an 
arbitrary divisor, and even measurably faster than the bitwise masking used when the table size 
is a power of two that is not divisible by eight.  

clip function 
𝒉 = 

index size 𝒌 = 
𝒇+ 𝒎𝒎𝑭𝑭 𝒇 ∗ 𝒎𝒎𝑭𝑭 (𝒎𝒎𝑭𝑭 ≪ 𝟖) + 𝒇 (𝒇 ≪ 𝟖) + 𝒎𝒎𝑭𝑭 

𝑘 % 𝑛𝑝𝑝(|𝔸|) next pseudoprime ≥ |𝔸| 40.7 42.1 43.1 44.0 
𝑘 % |𝔸| |𝔸| 40.6 43.0 43.0 44.8 
𝑘 & (2� − 1) 256 38.2 41.3 (𝑓𝑓)  38.9 (𝑚𝑚𝐹𝐹) 38.6 
𝑘 & (210 − 1) 1024 39.9 40.9 40.0 39.7 

Table 2. Evaluation of array storage hash functions. Four runtime hash functions—which create a seed 𝒌 by 
adding, multiplying, or shifting the feature identifier and in-mark—are examined with four clipping methods—
which truncate 𝒌 down to the size of the index table by performing modulo division (%) or bit masking (&). 
Results report the total parse time, in seconds, for 287 sentences in the ‘hike’ corpus.  

Although it is easy to understand that multiplication is more expensive than addition, it is sur-
prising that bit-shifting and masking are relatively expensive also, so much so that well-
intentioned strategies that aim for better hash distribution by integrating all available input en-
tropy may actually be better off just ignoring the lower-entropy signal (𝑓𝑓) altogether. Recently, 
a possible explanation for this has come to my attention. Since 2001, PC microprocessors have 
included a set of specialized instruction-set extensions (known as SSE2) which facilitate, 
among other things, high-performance bitwise operations. It is possible, given the inestimable 
value of each square micron of real estate on today’s CPUs, that the availability of a high-
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performance alternative on the same silicon justified compromises in the performance of the 
traditional x64 bitwise instructions. Furthermore, it is known that the current version of the 
.NET x64 JIT compiler does not emit SSE2 bit operations. Taken together, these considera-
tions could explain the poor performance of the bitwise tests in Table 2. 

3.3 Example 
This section provides examples of typed feature structures as represented according to the ar-
ray storage scheme described in this thesis. As described in Section 2.3.2, an array TFS storage 
entity 𝐴 binds a table of 4-tuples 𝔸 with a single 2-tuple 𝑞̅ = 〈𝑡𝑡,𝑚𝑚𝑇𝑇〉, which serves as the root 
entry point. For logical clarity in the depictions that follow, the root out-tuple will be adjoined 
to the top of the table depicting 𝔸, but this does not imply that the root out-tuple is stored in 𝔸; 
as noted in Section 3.2, it is stored separately. Tables representing array TFS storage relations 
are always arranged with the in-tuples (“arcs”) on the left and out-tuples (“nodes”) on the right. 
The distinguished root tuple, being an out-tuple, is thus shifted to the right side. 

The examples will not show data related to the hash access mechanism described in Section 
3.2.4, since this aspect of the design employs well-known techniques. I also will not label the 
rows of 𝔸 with index values, since storage order is irrelevant to the canonical access mode out-
lined in Section 2.3.6. The unifier, however, does examine row ordering, so index values will 
be shown alongside the array rows in the unification examples in Section 4.5. 

The first example shows the trivial case of a 
TFS which represents the expanded constraint 
for a type which has no features. Details were 
provided in Section 3.2.1 and the case is illus-
trated in Figure 8. 

Next, consider the NP rule from the demon-
stration grammar used throughout this thesis. 
The array TFS storage representation is shown 
in Figure 9. The example illustrates coreferencing in array TFS storage. Coreferenced nodes 
are always indicated by a negative mark value; in this TFS, there is a single coreferenced node, 
associated with mark value -1. Interpreted as an out-mark, any negative value must be consist-
ently paired with the same type across all out-tuples in 𝔸 that shares that mark value; accord-
ingly, the tuple 〈agr,−1〉 is repeated three times. This is the by-value equivalence which was 
the topic of Section 2.3.4. Contrast this with the DAG representation of Figure 5, where coref-
erencing is implemented according to referential equality, that is, via an assumption of global 
node uniqueness which is implicit in the model.39 The contrast is also evident from the fact that 

                                                   
39 Here, I am referring to physical—not logical—node uniqueness; the latter is of course a non-negotiable correctness 
requirement of the linguistic formalism. Physical uniqueness means that a node is unique across the virtual memory of 
the process. Array TFS storage abandons this condition while preserving logical uniqueness; in the DAG view, each logi-
cal node has a unique physical representation. 

 

in-tuple out-tuple 
𝑚𝑚𝐹𝐹 𝑓𝑓 𝑡𝑡 𝑚𝑚𝑇𝑇 

 
ROOT→ agr 0 

 

Figure 8. Every type in the type hierarchy must have an 
expanded TFS, even if it has no appropriate features. The 
requirement that 𝒎𝒎𝑻𝑻 be set to zero for all non-
coreferenced nodes whose type has no appropriate fea-
tures applies equally to the root out-tuple.  
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there are ten nodes (and eleven arcs) depicted in Figure 5, whereas there are eleven rows in the 
array storage representation (that is, not including the root tuple) of the same TFS in Figure 9. 
In fact, the number of rows in array storage relation 𝔸—and thus by extension, in any array 
storage TFS—will always equal the number of DAG arcs, and not the number of DAG nodes. 

 

in-tuple out-tuple 
𝑚𝑚𝐹𝐹 𝑓𝑓 𝑡𝑡 𝑚𝑚𝑇𝑇 

 
ROOT→ phrase 1 

1 CAT np 0 
1 NUM agr -1 
1 ARGS cons 5 
5 FIRST syn 2 
5 REST cons 4 
2 CAT det 0 
2 NUM agr -1 
4 FIRST syn 3 
4 REST null 0 
3 CAT n 0 
3 NUM agr -1 

 

𝑁𝑃 → 𝐷𝐸𝑇 𝑁 
Figure 9 Array TFS storage. The typed feature structure for 
the grammar rule shown above is represented as a single 
root out-tuple, plus a relation of paired 2-tuples 𝔸 which has 
eleven (additional) rows. Compare to Figure 5, where the 
same structure is depicted as a directed graph. 

This suggests an intuitive view of array storage as a feature-centric storage paradigm (whereas 
DAG conceptions could be considered node-centric). Although this tabular, feature-centric ap-
proach removes the convenience of “automatic” referential equality between nodes—which in 
turn requires the unifier to take steps which reinstate the condition—it turns out that the model 
simplifies the unifier itself, overall. This conclusion is the topic of Chapter 4, but in a nutshell, 
when unifier scratch fields are available on a per-arc (as opposed to per-node) basis, a new 
guarantee arises, namely, that the unification result structure, if it exists, can always be repre-
sented as a simple interconnection of pre-existing structures, resulting in no (additional) ma-
nipulation of operationally-variant structures. 

Returning now to the discussion of Figure 9, it is clear that, for coreferenced nodes, there is no 
storage row in 𝔸 that might be taken as the canonical physical storage location for logical node 
〈agr,−1〉; amongst the three rows that express this out-tuple, there is nothing that obviously 
distinguishes one of them relative to the others. Logical node identity is still preserved, though, 
because the same out-tuple is retrieved no matter which of these rows is queried. Furthermore, 
since this out-tuple will always contain the same (negative) value of 𝑚𝑚𝑇𝑇, its substructure is cor-
rectly conflated. Details on this point are given next. 

The coreferenced node 〈agr,−1〉 in Figure 9 does not itself have any substructure. To illustrate 
such a case, the modeling of syntactic agreement in the demonstration grammar is expanded to 
incorporate the notion of linguistic gender. The new type and its subtypes are shown Figure 10. 
Together with the number distinction from earlier, it is deployed in a new structure ‘num-gend’ 
intended to model agreement. This allows us to consider the TFS shown in Figure 11, which 



52 
 

expands upon the example shown above by illustrating the use of negative mark values within 
in-tuples. 

In fact, any integer value—whether negative 
or positive—receives equivalent treatment 
when interpreted as an in-mark 𝑚𝑚𝐹𝐹 by the in-
tuple hashing system. The one consideration 
regarding 𝑚𝑚𝐹𝐹 values is that zero is never 
permitted. This is to avoid confusion with the 
use of zero as the out-mark value 𝑚𝑚𝑇𝑇 in any 
out-tuple whose type has no appropriate fea-
tures (and which is also not coreferenced). 
Setting 𝑚𝑚𝑇𝑇 = 0 for such cases is obligatory 

in the array storage implementation presented here. Therefore, although the fact that a given 
type has no appropriate features is operationally obtained from the grammar (which immedi-
ately short-circuits further queries), forbidding 𝑚𝑚𝐹𝐹 = 0 prevents the accidental association of 
random substructure (viz., the substructure it would otherwise select) with (all of the) non-
coreferenced leaf nodes in the TFS. 

In the examples shown thus far, the feature which selects the coreferenced node happens to 
always be the same, but this is not necessarily always the case. In fact, as evinced by the fact 
that the set of in-tuples is necessarily distinct across any given storage relation 𝔸, the repetition 
of feature ‘NUMGEND’ does not imply any relationship between the tuples that contain it. 
Rather, those tuples refer to arcs which are logically distinct. In other words, while a logical 
node may have diffuse physical representation in array TFS storage, this is not the case for the 
TFS’s feature-value pairs, where each logical arc has exactly one physical correlate.  

Note that I was careful not to state that in-tuple distinctness applies “globally,” because in fact 
the requirement applies only within a single array TFS storage entity. Stated more generally, 
mark values obtained from a given TFS 𝐴 = 〈𝑡𝑡,𝑚𝑚,𝔸〉 have no meaning outside the context of 
𝔸, the storage relation from which they were obtained.40 This summarily interdicts the sharing 
of substructure between TFSes 𝐴 and 𝐵 in the current design, but several solutions can be en-
visioned. Most straightforwardly, any TFS-relative datum, such as a reference to some portion 
of internal substructure, can be made globally unique by simply pairing it with (a reference to) 
the TFS it pertains to, and then externally carrying the resulting tuple. 

Another solution would be to have the unifier issue mark integers from a global sequence 
counter as it emits new structures. In the current implementation, the unifier starts over with an 
independent sequence for each result TFS, a design chosen in order to reduce contention in 
concurrent operation. Using a global sequence is a viable alternative, providing mark values 

                                                   
40 Exceptions are the special out-mark values, 0 and 1, discussed earlier in this section and in Section 3.2.3. 

 
Figure 10. Some unconstrained types are added to the type 
hierarchy of the simple grammar in order to illustrate the 
occurrence of substructure below a coreferenced node. 
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are stored with adequate bit-width in 𝔸. The issue I hint at here is sequence overflow during 
lengthy batch processing sessions. Naturally, the occurrence of integer overflow would defeat 
the primary purpose, which is to guarantee unique addressing. To combat the problem, a mid 
dle-ground solution would be to use independent mark sequences on a per-parser-input basis. 

In other words, each sentence parsed or semantics generated would have a private sequence 
counter, with respect to which mark values would be unique. Such a solution would also miti-
gate contention to a small degree. The detailed exploration of proposals such as these are left 
for future work. 

 

 

 
in-tuple out-tuple 

𝑚𝑚𝐹𝐹 𝑓𝑓 𝑡𝑡 𝑚𝑚𝑇𝑇 

 
ROOT→ phrase 1 

1 CAT np 0 
1 NUMGEND num-gend -1 
1 ARGS cons 6 
6 FIRST syn 3 
6 REST cons 5 
3 CAT det 0 
3 NUMGEND num-gend -1 
5 FIRST syn 4 
5 REST null 0 
4 CAT n 0 
4 NUMGEND num-gend -1 
-1 NUM num 0 
-1 GEND gender 0 

 

  
Figure 11. Because the out-mark 𝒎𝒎𝑻𝑻 obtained from the multiple instances of a given coreferenced out-tuple always has 
the same value, substructure of the modeled node is uniquely identified. This is because, as an in-mark, a negative value 
selects nodes in exactly the same way as the (positive-valued) mark of a non-coreferenced node. Compare the table 
shown here to Figure 9, which had no negative values in the in-tuple column 𝒎𝒎𝑭𝑭. This shows that the problem of recov-
ering a physical node mapping from array TFS storage has a local solution, that is, the re-correlation of duplicated out-
tuples can always be resolved within a single layer of structural nesting. 
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This concludes the presentation of examples of the representation of array storage TFSes. The 
examples in this section focused on the persisted representation of fixed storage instances. Fur-
ther examples, given in Section 4.5, show how static structures such as these are manipulated 
via an active process, TFS unification, that provides a principled foundation for the modeling 
of linguistic structure. 

3.4 Future work in array storage 
The access paradigm used in agree’s array storage is an area of continued research. In the cur-
rent design, and as noted in Section 2.3.2, the ordering of the 4-tuples in array storage relation 
𝔸 is not operationally significant. Related to this, a research avenue I am currently pursuing is 
to abandon hashing and order the 4-tuples in 𝔸 according to primary key 𝑚𝑚𝐹𝐹 and secondary 
key 𝑓𝑓. This would permit a single 4-tuple pointer to be handed off to the unifier. From here, 
the unifier would itself walk forward to directly examine all of the 4-tuples for a node, thereby 
eliminating 𝑛 − 1 array storage queries for each node with 𝑛 feature-value pairs. For a varia-
tion on the method, each in-mark value 𝑚𝑚𝐹𝐹 might be assigned to be the index, in 𝔸, of its first 
feature-value pair. 

Specifically, the research involves a variation on array storage that even further exploits the 
feature appropriateness condition. Because the 206 features used by the English Resource 
Grammar always appear in one of only 120 different configurations, the latter can be taken as 
fixed in a study of the feature arity problem (Section 2.2.3). In other words, assuming gram-
mars exhibit the property that reentrancies in the type hierarchy 〈TYPE, ⊑〉 are, on average, 
moderate in number and relatively distant from the root ⊤, arity conflicts between consistent 
collections of sets of co-occurring features will be limited, and an expensive arity analysis 
phase during grammar startup is justified. 

I extend the work of Callmeier (2001, 50), who proposes three schemes for pre-computing 
fixed feature layouts. The methods achieve a neutral result in Callmeier’s evaluation. A key 
point, however, is that this work is constrained by the fact that the Tomabechi implementation 
uses in situ scratch slots, and so must generally be able—during unification—to adapt to dy-
namic changes in the set of features appropriate for a node. Once a feature arity map is selected 
for a node, it is inefficient to switch to another, so Callmeier studies methods for minimizing 
these ‘coercions.’  

I instead note that, with detached scratch slots and array storage, it is not necessary to predict 
nodes’ feature arity unification dynamics. It is sufficient to pre-compute only the limited, glob-
al set of actual appropriate feature configurations—and not consider the (set of) all of the ways 
in which they can be consistently combined. This is because, with the array systems described 
in this thesis, a TFS is written only once, during the second pass of the unifier, at which time 
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each node’s exact feature configuration is definitively known, and at which time it is trivial to 
select the pre-computed arity map for the node’s type. Thereafter, the TFS is read-only.  

Therefore, the feature arity encoding problem is both simplified and pushed down into the 
storage domain. The requirements are now to find the most efficient way to model a graph 
which associates (type) values around a limited, known set of arity (feature) configurations. 
Efficiency here entails that both the space consumption and runtime fetching be minimized. In 
this early stage of the research, I have identified a simple and promising approach. 

A feature configuration 𝒲 is an (unordered) set of features that co-occur in some TFS node. 

 𝒲 = {𝑓𝑓: 𝑓𝑓 ∈ FEAT} (3.22) 

 As noted, with its 206 features, the ERG manifests only 120 distinct feature configurations, 
and the well-formedness requirement ensures that this figure is a globally-invariant upper 
bound for the grammar. Recall from 3.2 that, when a grammar is loaded, each feature 𝑓𝑓 ∈ FEAT 

is given a unique identifying integer. Let all possible mappings be designated 𝒦 so that a par-
ticular mapping is 𝓀 ∈ 𝒦. 

Given some 𝓀, for each possible feature configuration 𝒲 there exists an optimal encoding 
modulus 𝑢̂𝒲. This is the integer which, when used as divisor for each feature identifier 𝑓𝑓 ∈ 𝒲, 
the set of remainder values which spans a minimal range is given: 
 𝑢̂𝒲 = argmin

𝑢:{1…(max
𝒲

𝑓 − min
𝒲

𝑓}
(max

𝒲
(𝑓𝑓 % 𝑢) − min

𝒲
𝑓𝑓 % 𝑢) (3.23) 

The optimal modulus 𝑢̂ is an invariant property of each feature configuration—given some 
𝓀—and each type in 〈TYPE, ⊑〉 is associated with exactly feature configuration, its set of ap-
propriate features. 

Because the feature-to-integer mapping is produced at the discretion of the implementation, it 
is possible to optimize (3.23) by seeking the mapping of integer values to features 𝓀̂ for which 
the maximum optimal modulus max𝒲 𝑢̂𝒲𝑖 amongst all feature configurations in the grammar 
is minimized: 

 𝓀̂ = argmin
𝓀∈𝒦

(max
𝒲

𝑢̂𝒲𝑖) (3.24) 

A concern of the modulus encoding scheme for TFS storage, to be described shortly, is that it 
could be wasteful of memory. (3.24) identifies the feature-to-integer assignment which, when 
used in the scheme described below, results in a minimum of wasted memory. Unfortunately, 
the number of possible mappings |𝒦| is very large, and (3.24) is not tractably computed. Nev-
ertheless, experiments with the ERG show that total wasted memory using the method would 
not be excessive.  
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Now detailing the modulus encoding array TFS storage approach, the feature-value pairs, (if 
any) for node 𝑞 = 〈𝑡𝑡,𝑚𝑚〉(TYPE,ℤ)  are stored sequentially in the rows of a relation 𝔹 =
{𝑏: 〈𝑡𝑡,𝑚𝑚〉(TYPE,𝕫) }, beginning at the zero-based row index given by 

 𝑚𝑚 + (𝑓𝑓 % 𝑢̂𝒲𝑡). (3.25) 

There is no hash table and no feature identifier is stored. Mark value 𝑚𝑚—now in a use unrelat-
ed to the current array storage design—indicates the starting physical index in 𝔹 of the first in 
a set of rows. The number of rows reserved for a node is known to equal the optimal modulus 
û𝒲t of the feature configuration 𝒲𝑡  associated with the node’s type 𝑡𝑡. Within the set of con-
tiguous slots (that is, relative to 𝑚𝑚), the node or nodes associated with each feature appropriate 
to 𝑡𝑡 occupy an offset which is the result of the modulus division.  

As with array TFS storage, it is the responsibility of the clients of the storage to supply a fea-
ture identifier as part of the address for the node they wish to retrieve—or walk the sequential 
entries in the storage relation directly themselves. Naturally, this information is available from 
in the grammar, and it can be managed in whatever manner befits the different storage uses and 
activities. The variation in client uses, however, poses more of a problem for this method than 
it does for ordinary (i.e. non-modulus) array TFS storage. The next paragraph examines this 
issue. 

In modulus feature encoding, each encoding may contain holes, which represent wasted space. 
Attempting to retrieve one of these slots would represent the error of asking for the value of a 
feature which is inappropriate for the type. Recall that in the ordinary array TFS storage meth-
od contributed by this thesis, requesting the value of an inappropriate feature silently returns 
the successful result that there is no constraint. Lacking a hash table, however, the lighter-
weight modulus scheme described here would not inherently exhibit this graceful fallback. 
Although the modulus division for some errant feature requests might happen to land on an 
empty slot, most would wrap around to the index of the value associated with some other unre-
lated feature. Because inappropriate requests return random data, it is more critical with the 
modulus method to establish external measures for ensuring that values are only requested for 
appropriate features. To maximize performance, internal subsystems which are known to re-
quest only appropriate features, such as the unifier, might be allowed to bypass this safeguard, 
while storage activities that are less controlled, such as user interaction, maintain the checks. 

The main savings of modulus feature encoding is that it does not require feature identifiers 𝑓𝑓 to 
be stored, immediately cutting the storage requirements for every TFS. To evaluate this meth-
od, I analyzed feature the configurations of the ERG. The 120 feature configurations exhibit 
between zero and fourteen features each, but for these experiments, the diagnostic feature 
‘RNAME’ was excluded, so max𝒲|𝑊𝑖| = 13. Table 4 shows the results of these experiments, 
comparing the minimum modulus computation using unaltered feature identifier assign-
ments—where feature identifiers are assigned in the order they are encountered while loading 
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the grammar—and comparing them to a mapping 𝓀 which represents the lowest value for 
max𝒲 û𝒲ifound so far in a program of exploring equation (3.24). 41 

 
actual number 
of features per 

node 

un-optimized 𝓀 optimized 𝓀 

𝑢̂𝒲𝑖 
excess 

features per 
node 

𝑢̂𝒲𝑖 
excess 

features per 
node 

min 0.00 0.00 0.00 0.00 0.00 
average 5.65 7.76 2.11 7.25 1.60 

weighted avg 6.47 7.27 0.80 7.59 1.12 
max 13.00 25.00 15.00 16.00 2.00       

Table 3. Analysis of the 120 feature configurations in the ERG for optimal-modulus feature arity encoding. 

 
 ERG total nodes Waste 

actual requirement 53,412 - 

un-optimized 𝓀 60,010 12.35% 

optimized  𝓀 62,589 17.18% 

Table 4. Analysis of the total number of TFS (substructure) nodes stored for all expanded 
type definitions in the ERG. The actual requirement is compared to the proposed modulus 
encoding scheme using two different feature-identifier mappings. 

The results are instructive; the mapping which should be space-optimized does indeed waste 
less when all of the 120 feature configurations are given equal weight, but when the results are 
adjusted to model the total number of nodes consumed by the loaded grammar, the optimized 
mapping actually wastes 5% more space than the un-optimized method. This means that a dis-
proportionately large fraction of the nodes that comprise the loaded ERG use the smaller fea-
ture configurations, and that the presumably random mapping is lucky enough to be less waste-
ful for these smaller configurations than the hard-earned “optimal” configuration. 

This analysis is preliminary. In particular, additional work is needed to characterize the use 
distribution of the feature configurations, and to then reformulate objective function (3.24) in 
terms of this distribution. Future work should seek a mapping 𝓀 that minimizes waste in the 
smaller configurations at the expense of fitting the larger ones (which are much more difficult 
to solve anyway). From these results I am able to conclude that further investigation is justi-
fied, because it appears that the total amount of memory used in this scheme—waste plus non-
waste—will not exceed the memory requirement of the (non-modulus) array storage method 
proposed in this thesis. The latter stores a feature identifier for every arc, which the proposed 
scheme does not, and the tests indicate that number of wasted array slots in the proposed meth-
od will not be egregious.42 

This section gave a preview of my ongoing work in array TFS storage research. An alternative 
to the main method of this thesis was sketched and the method promises to reduce the memory 

                                                   
41 For these experiments, a brute-force search was used to explore (3.24). Solutions with min𝒲 𝑢̂𝒲𝑖 = 17 can be found 
relatively easily, but only a single solution with modulus 16 was obtained in several hours of computation. 
42 Note also that each 2-tuple in the proposed scheme is half the size (or less) of a standard array TFS 4-tuple.  
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footprint compared to the current array TFS storage design. The method is a considerable de-
parture from the implemented system, and only the preliminary feasibility experiments pre-
sented here—and no prototype—have been completed. It is important to mention that the eval-
uation and results presented in Chapter 5 pertain not to this sketch, but rather the array storage 
system described as the main contribution of this thesis. 

3.5 Summary 
This concludes the discussion of array TFS storage. The chapter began by contrasting an axio-
matized formal conception (Carpenter 1992) with graphical treatments (King 1989, 1994) 
which more closely parallel engineering practice. The bulk of the discussion was a formal 
presentation, in notation adapted from relational algebra, of the array storage scheme proposed 
in this thesis. In this method, all of a TFS’s nodes are stored within a single monolithic alloca-
tion. Engineering motivations for this approach were presented, including the observation that 
such a system, by reducing pressure on the system garbage collector, may be especially suited 
to use in managed-runtime environments. Details particular to the agree implementation of 
array TFS storage were also discussed. 

To establish the efficacy of array TFS storage in realistic linguistic application, it was deployed 
in the agree grammar engineering platform. The next chapter discusses the unification algo-
rithms investigated as part of that system. The chapter begins with a review of prior work in 
algorithms for linguistic unification, including a description of n-way unification, a novel and 
interesting (but now superseded) method developed as part of this research. The latest unifica-
tion algorithm developed for agree is presented in detail. The method is implemented over ar-
ray TFS storage, but aspects that are applicable to traditional TFS storage are noted.  
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4 Unification 
Given the descriptions of two objects, unification is defined as the computation of the most 
general object which satisfies both descriptions, if such an object exists. Research into deter-
mining this most general unifier began in the context of term unification, the unification of 
variables in mathematical equations (Herbrand 1930). A thorough review of early work in term 
unification can be found in Knight (1989). 

In linguistic applications, grammatical objects are encoded as typed feature structures, and 
their interactions are modeled via unification, the lone operation applied for this purpose. A 
total binary operator ℱ × ℱ → {⊥}  ∪  ℱ,43 feature structure unification produces the single 
most general TFS which contains all of the information from two input TFSes, if such a struc-
ture exists. 

Chapter 4 has the following structure. The first section provides an overview of well-formed 
unification. The well-formedness requirement is an instructive point of departure because it 
generally demands, as a fundamental design requirement, that the unifier support reentrancy, 
which in turn can interfere with certain unification algorithms and efficiency techniques that 
have been proposed in the prior literature. 

Modern unifier designs draw from a rich set of research literature. Section 4.2 reviews this 
work, focusing attention on the milestones most relevant to the present work. For example, 
particular attention will be paid to van Lohuizen’s work on concurrent unification, since the 
agree unifier presented in this thesis is also thread-safe, supporting the operation of the agree 
concurrent chart parser and generator components. 

Section 4.3 describes n-way unification, a previous research direction that received a complete 
implementation in agree, but which has since been deprecated in favor of the array TFS unifi-
er. Although the efficiency of the n-way implementation was hampered by uninteresting tech-
nical details, the method itself explores a certain theoretical bound on unifier complexity. The 
n-way algorithm also resists categorization by an informally-defined model that has focused 
the research discussion since the late 1980s, suggesting that the n-way method is fairly unusual 
in comparison to the other reviewed work. Specifically, as an implemented expression of a 
theoretical lower bound on unifier work that nevertheless shows acceptable—but not stellar—
performance, the n-way implementation invites renewed examination of those traditional cate-
gories. Two questions that emerge are, first, whether classifying algorithms according to vari-
ously interpreted descriptions of “copying” behavior is a technique which the research com-
munity has outgrown, and second, whether the described classes remain relevant to contempo-
rary implementations. 

                                                   
43 Note that well-formed TFS unification is not a partial function  ℱ × ℱ ⇸ ℱ, since ⊥ is an interpretable result. 
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Following the discussion of n-way unification, Section 4.4, presents the description of array 
TFS unification. This, along with the array TFS storage that it relies on, is the primary contri-
bution of this thesis. The section contains formal discussion as well as details on implementa-
tion. The final two sections of this chapter give examples of the operation of the array TFS uni-
fier, and provide offer summarizing comments, respectively. 

4.1 Well-formed unification 
It is important at the outset of this chapter on unification to distinguish feature structure unifi-
cation—the subject of this chapter—from type unification, upon which it depends. The two are 
similar in that they both produce either a most general mutually-consistent result, or an indica-
tion that no such result exists. Type unification, however, appeals only to the type hierarchy 
〈TYPE, ⊑〉 for determining the consistency between simple scalar types. Recall that, upon load-
ing, 〈TYPE, ⊑〉 was automatically modified so that every such outcome is deterministic.  

Typed feature structure unification, on the other hand, is the process of producing a new TFS: 
the most general TFS that is consistent with a set of input TFSes. This is the role of a unifica-
tion algorithm, or a TFS unifier. In TFS unification, type unification is the operation applied 
between every pair of isomorphically coincident nodes—to be precise, between the types of the 
pair—in order to form the result structure. 

Section 2.1.5 described well-formedness for typed feature structures. Recall that this means 
that at no time may any feature structure be inconsistent with any constraint authored as part of 
the grammar. In the DELPH-IN joint reference formalism, every TFS is required to be well-
formed at all times. After initially making all of the entries in the grammar well-formed, the 
burden, during parsing and generation, of maintaining well-formedness is reduced, but not 
eliminated. Because the unifier produces new structures during parsing or generation, it as-
sumes the responsibility for ensuring that those structures are well-formed. 

During parsing, unification can successfully combine structures in ways that produce results 
that are not automatically well-formed, even though all of the input arguments were well-
formed. If these feature structures cannot be made well-formed—that is, if the additional unifi-
cations required to make them consistent with the relevant parts of the grammar, fail—then the 
original unification is taken to have failed. For the unifier, this is a condition that must be eval-
uated at every node. The condition that signals that the additional step must be taken is that the 
type unification between two nodes results in a type which is not identical to either of the input 
node types. When this is detected, the unifier must temporarily cease its pairwise traversal of 
the input arguments to conduct an additional unification. It must fetch the TFS representing the 
expanded constraint for the type in question, and unify this entire structure at the target node in 
the new structure before resuming with the original work. 

With simple unifier designs, the interruption is easily accommodated with a recursive call to 
the unification function. The matter is complicated by issues discussed throughout this thesis: 
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• If shared structures containing coreferences are introduced into the same result struc-
ture more than once, their coreferences must not be conflated. 

• If a reference TFS is used in a recursive call, and if it contains in situ scratch slots 
which are in use, then alternate measures must be available 

• A concurrent unifier must permit reentrancy with regard to its scratch slot mechanism. 

In short, well-formed unification is a formal requirement that affects nearly all areas of unifier 
design. Research into linguistic computational unification has been active for three decades 
and a wide variety of avenues have been explored; many of these ideas inform the solutions 
used in today’s increasingly sophisticated algorithms. A chronological review of published 
work in linguistic unification is the topic of the next section. 

4.2 Prior work in linguistic unification 
Early work in unification grew from research on term unification in the Prolog logic program-
ming language. In term unification, each of the input arguments must have identical property 
sets in order for unification to succeed. Later applications, especially in linguistics, began to 
adopt the more flexible graph unification paradigm, a generalization of term unification which 
allows the combination of nodes with disjoint feature sets. As the body of literature in linguis-
tic unification grew, researchers in computational linguistics established descriptive terminolo-
gy that has been generally adopted to describe three desiderata for an efficient unification pro-
cedure: 

• Unification should avoid early copying. Wroblewski (1987) proffered this term as de-
scribing wholesale copying of input arguments prior to the start of a destructive unifi-
cation operation, but later researchers commonly adopt Tomabechi’s (1992) stricter in-
terpretation, which also counts all output structures produced during any unification 
that eventually fails. 

• Unification should avoid over copying. Also introduced by Wrolblewski, this refers to 
creation of any structure which does not end up becoming part of the actual result. 

• Unification should minimize redundant copying. Kogure (1990) points out that a re-
sult TFS often includes sub-structures that are identical to structures that exist else-
where, and these, ideally, do not need to be copied either. In other words, structure 
sharing should be maximized across the entire system. 

• Lazy copying (Godden 1990, Tomuro and Lytinen 1997) variously refers to schemes 
which attempt to defer copying activities until they are proven absolutely necessary. 

For broad analysis, these are useful distinctions, but their inherent blurriness has not previously 
been emphasized. For example, the over-copying definition penalizes the production of “re-
sult” structure, but not excessive manipulation of temporary structures. The difference between 
the two is often not clear-cut, since at a fundamental level, both simply involve storing values 
in memory. Consider hyper-active parsing (Oepen et al, 2005), where temporary structures are 



62 
 

retained, unrealized, for participation in further unifications. Should these count as “result 
structure?”  

Furthermore, although the categories implicitly reward two-pass unifiers for exhibiting no 
over-copying, intensive scratch slot activity during the first pass could erode this advantage. A 
more meaningful measure would consider the average memory bus throughput, per unification. 
Further pursuit of these types of experiments is left for future work; for the present thesis, the 
definitions are adopted with requisite caution. 

Next, I review the research chronology in algorithms for linguistic unification. Where appro-
priate, connections to array storage unification are highlighted. Several research threads have 
been pursued in four decades of work, all aimed at reducing the computational burden of graph 
unification. For completeness, research avenues that were not further pursued are also placed 
in context with brief summaries. Two broad classifications to note at the outset are the classifi-
cation of methods as single- or two-pass, and the contrast between destructive and non-
destructive techniques. Single-pass methods are obviously simpler than two-pass methods, but 
the latter are preferred when an inexpensive first pass can detect failures. Destructive methods 
consume at least one of the input graphs in producing the result structure, and I begin with a 
description of the seminal algorithm which falls into this category (Section 4.2.1). Linguistic 
applications require non-destructive methods, such as those reviewed in Sections 4.2.2 through 
4.2.10. 

4.2.1 UNION-FIND 
The first unification algorithms suitable for linguistic applications derived from earlier work on 
UNION-FIND (Aho et al. 1976, after fellow Bell Labs researcher Robert Morris44). This method 
introduces the basic technique—which is present in most subsequent work—of processing the 
nodes of the input argument graphs in step, recursively. An equivalence class is built by com-
bining arcs from each of the instant nodes. At each step, one of the input nodes is chosen as a 
representative of the class, and the other node is redirected, or forwarded to it. Where both in-
puts contribute an arc with a matching label, the procedure descends recursively on the repre-
sentative of the joined inputs. 

Most critically, immediately upon arriving at any node, its forwarding chain, if any, is fol-
lowed to a terminal node, which is then considered a stand-in for the original node, including 
for the purpose of further forwarding. This is the fundamental insight of UNION-FIND, which I 
refer to as dereference-before-forward. With dereference-before-forward, membership in a co-
reference equivalence class is signified by the identity of some terminal node. It follows that 
one-way (singly-linked) forwarding is sufficient to ensure that two disjoint chains—of any 
length, and which each represent distinct equivalence classes—can be joined by the trivial op-
                                                   
44 Aho credits Morris without citation. According to Doug McIlroy, also then at Bell Labs, Bob Morris’ “path compres-
sion” idea was unpublished: “To Morris it was just one of those little tricks that one comes up with in the course of nor-
mal programming.” (M. Doug McIlroy, personal correspondence 5/28/2011) 
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eration of setting the link field in one terminus to a value that identifies the other terminus.45 
Upon passing out of the input structures, the terminal nodes describe a graph which contains 
all of the arcs and reentrancies of both input graphs. Pseudo-code for the basic scheme, at-
tributed to Boyer and Moore by Pereira (1985), is provided in Wroblewski (1987). 

4.2.2 PATR-II: environments and structure sharing 
The earliest linguistic uses of unification were strongly influenced by work in term unification. 
Definite-clause grammars (Pereira and Warren, 1980) and related term unification linguistic 
formalisms arose in response to advances in Prolog—such as Prolog II (Colmerauer 1982)—
and the mature state of term unification research. 

An early implementation in this vein was the PATR-II system (Shieber et al. 1984). This sys-
tem uses for its term unification algorithm the basic procedure of UNION-FIND. To avoid the 
prohibitive expense of pre-copying every structure which participates in (destructive) unifica-
tion, the system uses virtual-copy arrays, a familiar feature from Prolog, to virtualize the DAG 
representation. In another structure sharing scheme (Pereira 1985), TFS instances are 
〈skeleton,update〉 tuples and the unification algorithm manipulates only the updates, which ob-
tain context from their association with an environment, an input structure that is not altered. 
When accessing a derived instance, its updates must be applied, which may involve an 
𝑂(log𝑛) search at each node, and merging of environments. 

As noted, Pereira’s scheme is based on UNION-FIND, an algorithm that is necessarily destructive 
to at least one of the input graphs. This “ravaging” (Wroblewski 1987) of the argument graphs 
is not acceptable when they represent invariant reference structures—such as grammar rules or 
lexical entries—or memoized46 parsing results. Since this describes virtually all of the unifica-
tions preformed in the normal course of grammar processing, destructive unification has lim-
ited utility in linguistic application. 

The technique Pereira describes is complex, and certain of its aspects are justified, in part, by 
specific linguistic considerations from the parsing application. Perhaps the most important con-
tribution of Pereira’s work was to identify memory access throughput as the fundamental prob-
lem in unification. Although Pereira’s response to the problem—that of crafting clever data 
structures that consolidate and defer these manipulations—was a worthy pursuit, he might not 
have suspected the severity of the issue: so fundamental is the throughput bottleneck in linguis-
tic unification that most modern algorithms benefit from running each unification in two pass-
es—the first to simply determine whether or not the costly operation might fail, in which case 
the second pass can be avoided altogether. It would be a few years before this type of approach 
was formally embraced. 

                                                   
45 In fact, the forwarded node could be pointed to any member of the other node’s chain. 
46 Memoization refers to storing intermediate results that may be needed in later stages of a computation. 
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4.2.3 D-PATR 
In work developed across a few different implementation variations, Karttunen (1986) docu-
ments important early investigations of reversible unification. D-PATR was an influential uni-
fication parser which evolved from his earlier work at the Scandinavian Summer Workshop in 
Finland. 

To prevent the destruction of grammar elements, one version of the system, Z-PATR, copies 
feature structures prior to invoking every (destructive) unification operation. An improvement 
in the D-PATR system hints at the insight—formally stated by Tomabechi a few years later—
that unification failure is the operational case that should be favored in optimization. Specifi-
cally, D-PATR proceeds with the destructive operation forthwith, saving every modification it 
enacts to a list. In case of failure, these changes can be reversed, and an expensive, futile full 
copy of the input structures has been avoided. If the unification succeeds, it is the result struc-
ture that is fully copied, prior to reversing the changes which restore the input structures. 

4.2.4 Incremental unification 
Recall, with UNION-FIND, that the procedure was not usable because it ravaged one or both of 
the input graphs. An obvious workaround is to produce the result graph anew, without con-
scripting one of the argument graphs as a representative, a method explored by Wroblewski 
(1987). This method adds a COPY field to each node’s scratch fields. This field allows a node in 
the result structure to be associated with the equivalence classes built by joining nodes from 
the input arguments. 

 Applying the efficiency categories he promulgated to 
his own work, Wroblewski concludes that, while his 
method eliminates early copying, it is still prone to 
over copying, specifically when joining coreference 
equivalence classes that were previously encountered 
and interpreted as distinct. Intuitively, we can see why 
any method that proactively creates result nodes will 
be subject to over copying: a greedy process cannot 

foresee whether those nodes may need to be joined later, meaning that only a single node 
should have been created. This is the problem of transitive coreference spreading (Figure 12), 
which directly inspired the n-way single-pass unification method detailed in Section 4.3. 

Also widely cited (inter alia, Emele 1991, Tomabechi 1992, Callmeier 2000) from Wroblew-
ski’s work is the idea of the generation counter,47 which became important to the bevy of 
methods that dedicate scratch fields—in situ within the input nodes—expressly to unification. 
In such schemes, it is important to be able to categorically abandon the values of these scratch 
fields, across all nodes in the system, so that subsequent operations do not consider them rele-
                                                   
47 Wroblewski attributes the idea to Ph.D. student Mark Tarlton, now a Distinguished Researcher at Motorola. 

 
Figure 12. Coreference spreading. The unifica-
tion of 𝒕𝟏 and 𝒕𝟐, each independently derived 
from 𝒂, equates two coreference equivalence 
classes which were distinct within 𝒕𝟏. This tran-
sitive spreading can extend to arbitrary length. 
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vant. Wroblewski notes that, by maintaining the value of a global sequence counter in each 
scratch slot—and only respecting the slot’s contents if its value matches the current generation 
number—it becomes possible to globally invalidate all scratch slots by simply incrementing 
the counter. 

The use of in situ scratch fields is not compatible with multi-threaded access to the structures 
involved. The easiest way to remedy this is to devise a method to associate a private set of de-
tached scratch slots with each input structure. This is the technique used by van Lohuizen 
(2001) and by the array storage unifier described in Section 4.4. In detaching the scratch slots, 
the generation counter technique for categorical invalidation may become less important, as the 
slots can simply be discarded as a whole. Section 4.4.3 discusses such an approach in detail. 

4.2.5 Lazy approaches 
A number of different “lazy” approaches to unification have been investigated. In Godden’s 
(1990) elegant variant, which the author contrasts with “eager” methods, the closure feature of 
the LISP programming language is used to capture the unification work required to join co-
occurring input arguments. The hope is that the expense of the bulky language abstraction is 
outweighed by a reduction in unnecessary copying. In effect, however, the closure itself can be 
viewed as—already—a copy of the relevant result node. The effort undertaken to create the 
closure is wasted if the lazy result is never demanded, or if no further changes occur to the un-
derlying nodes. Godden finds merit in his preliminary results, but the research avenue appears 
not to have been pursued further. 

Tomuro and Lytinen (1997) investigate another method for deferring the wholesale copying of 
input graphs until a destructive modification is about to occur. The authors describe a copy en-
vironment which globally records a copy history for every top-level TFS that participates in a 
parsing operation. Each TFS’s copy history contains a list of tuples which record the supersed-
ing of one of its internal nodes by some copy operation. These copy history entries are consult-
ed when dereferencing nodes in various contexts. 

Coming some years after the successful Tomabechi method, described in Section 4.2.9, Tomu-
ro and Lytinen take aim at the assumption—inherent in Tomabechi’s method—that failure is 
fundamentally more frequent than success in linguistic unification. It is true that any two-pass 
method strongly implies the incorporation of this tenet, but the authors of the newer work do 
not mention whether they have encountered a realistic natural language grammar which chal-
lenges it. 

More significantly for the method proposed in this thesis, Tomuro and Lytinen also question 
the “extra bookkeeping” required by Tomabechi’s method, suggesting that his approach is nec-
essarily complicated by its two-pass character. Although further elaboration on this point is not 
provided, it is safe to assume that the authors are referring to the COMP-ARC-LIST in To-
mabechi’s method, a data structure which propagates result arcs—representing features that are 
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not covered by the scratch slots of the designated representative node—from the first pass to 
the second pass. A key contribution of this thesis is the result that this complication can be 
eliminated from a two-pass method. The array TFS unifier, presented in this thesis, demon-
strates the technique. Although still subject to Tomuro and Lyntinen’s first objection, the pre-
sent work—by describing a two-pass method that is simpler than any published lazy method—
disqualifies their second. 

4.2.6 Chronological dereferencing 
Noting that Wroblewski’s generation counter describes a sort of chronology of TFS changes, 
Emele (1991) describes a method which seeks to mitigate the third type of categorical ineffi-
ciency—redundant copying—by associating a snapshot of the generation counter with a 
“copynode.” Copynode environments are extended—and the generation counter increment-
ed—whenever a destructive change is about to occur. In other respects, the copynode is similar 
to the environment used in earlier methods (viz. Pereira 1985). Node dereferencing is extended 
so that it not only traverses across nodes, but across the generation chronology. 

The system is designed for the storage of structures that persist outside the context of unifica-
tion, but as a bonus, the same mechanism facilitates unification itself. A potential disadvantage 
of the system is the unchecked accretion of copynode layers that might occur when building 
elaborate structure, such as during parsing. As with the earlier environment methods, following 
a lengthy chronological chain exacts penalties during node dereferencing. 

4.2.7 Later work in term unification 
In term unification—a special case of the graph unification discussed in this thesis—the list of 
features appearing in each unification argument must be identical in order for the unification to 
succeed. Because they work with isomorphic binding lists, term unification systems are sim-
pler and thus are likely to exhibit a performance advantage over graph unifiers. Carroll (1993) 
compares his ANLT term unification and parsing system with the contemporary work, noting 
that term unification parsers are little studied (ibid, 40). This remains the case today; modern-
day linguistic research has largely adopted graph unification methods. To a limited extent, one 
advantage of term unification cited by Carroll—that every category contains only a fixed set of 
features—can be enjoyed by graph unification implementations which exploit the grammar’s 
feature appropriateness condition. The method contributed by this thesis is a concrete example 
of such an approach. 

4.2.8 Strategic lazy incremental copy graph unification 
The 1990s saw continued advances in linguistic unification research. With his LING system, 
Kogure (1990) describes a technique which enables structure sharing while retaining 𝑂(1) 
node access performance, a substantial improvement on earlier structure sharing methods (viz. 
Pereira 1985). Structure sharing addresses the problem of redundant copying—the waste of 
time and space associated with reproducing any structure which appears elsewhere in the 
grammar. From a baseline of Wroblewski’s method, LING adds a field to each node that tracks 
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dependencies between structures. A special routine for copying nodes examines these depend-
encies to determine the cascading effects of a modification. This permits maximal structure 
sharing without worrying about spurious sharing, but the complexity of copying increases.  

The same report also discusses the SING unifier, which incorporates a stochastic model to pre-
dict likely unification failure paths, so that these paths can be followed first. Kogure’s two 
methods are combined in the strategic lazy incremental copy graph (SLING) system, but no 
evaluation is provided. 

Methods similar to SING are commonplace in today’s systems. Quick-check (Kiefer et al., 
1999, Malouf et al. 2000) is implemented in all DELPH-IN parsers, including agree, the new 
system presented in this thesis. Like Kogure’s system, quick-check uses offline training to de-
velop a set of failure-prone feature paths. 

In a similar vein, agree also offers an adaptive (unsupervised) tuning feature which operates on 
single-feature frequencies. When enabled, an independent tally for the immediate feature 
which causes each unification failure is incremented. After each sentence (in batch parsing), or 
at some other prescribed interval, the persistent feature evaluation order used by the unifier is 
adjusted according to descending order of these tallies. The simple method shows promise but 
is not discussed further in this thesis; evaluation is left for future work. 

4.2.9 Quasi-destructive unification 
Contemporary with Kogure’s work, Tomabechi developed “quasi-destructive unification” 
(Tomabechi 1991, 1992), a method which became one of the most cited. This is the method 
implemented in the LKB (Copestake 2002b) and PET (Callmeier 2000) parsers. The key in-
sight of this work was to explicitly acknowledge that unification failure is far more common-
place than unification success in realistic linguistic application. To avoid over copying, there-
fore, unification should occur in two passes, with no memory allocations occurring during the 
first pass. 

Like the array storage unification presented in this thesis, quasi-destructive unification is based 
on UNION-FIND (Aho et al., after Morris 1976) and comprises two synchronous passes. The first 
pass joins the input structures by manipulating in situ scratch fields, but never writes any out-
put structure. The argument TFSes are recursively traversed from their root nodes, in tandem. 
At each step, nodes are paired according to their co-occurrence in the traversal. When arriving 
at a pair, each node’s forwarding pointer is individually dereferenced, if non-terminal, by fol-
lowing a forwarding chain until reaching a terminating node. The terminus of the forwarding 
chain, and its corresponding scratch slot, replace the original node for further operations with 
the node pair. Next, pre-existing node identity and type unification (or failure) are checked be-
tween the dereferenced pair. If type unification succeeds and the nodes are not already joined, 
then one of the nodes is designated as the representative, and the forwarding field in the other 
node’s scratch slot is pointed to the representative. 
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In order to avoid modifying the input TFSes, the first pass records all of its modifications in 
scratch fields; as in Wroblewski’s method, a global generation counter allows them to be 
summarily discarded should unification later fail. The scratch fields consist of the node for-
warding pointer (from UNION-FIND) and a list called COMP-ARC-LIST. Between the feature-value 
pairs of the instant nodes, the method calculates the set intersection and the set complement. 
The former set is maintained in the representative node, with modifications handled according 
to the forwarding pointer. The pairs from the latter—that is, features that are only constrained 
by the input argument that was not chosen as representative—are added to the COMP-ARC-LIST, 
which is then considered adjunct to the representative. The joint traversal continues recursively 
on the set of feature-value pairs constrained by both nodes. TFS realization occurs in the se-
cond pass of the algorithm, which is only undertaken after overall success has been guaranteed. 

Tomabechi emphasizes that no output structure is written in the case of unification failure—
thus, there is no “over copying.” This should be optimal assuming his observation about the 
preponderance of unification failures. For the decade that followed, his observation inadvert-
ently galvanized much of the subsequent linguistic unification research around the notion of 
avoiding unification altogether, rather than optimizing its enactment. The culmination of the 
trend was the description of several pre-unification checks (Kiefer et al., 1999, Malouf et al. 
2000), notably a rule compatibility pre-filter and the trivial—but highly effective—quick-
check technique. In this latter technique, an empirically-tuned set of likely failure paths are 
probed for failure of type unification, prior to initiating unification. 

Pre-filtering techniques—and unification research—quickly and properly became preliminary 
and adjunct to unification proper, with the result that Tomabechi’s method has remained the 
staple unifier for many modern grammar engineering environments, including all prominent 
DELPH-IN parsers: LKB, PET, and Ace.48 What has not been re-examined in the linguistic 
unification literature is where the quasi-destructive unifier—and two-pass parsing in general—
stands after the widespread adoption of effective preprocessing filters, a question left for future 
evaluation. 

I conclude this section with mention of a pertinent issue which relates to the present thesis. In 
the most general sense, Tomabechi’s method describes two separate “forwarding” mecha-
nisms. The scalar forwarding pointer, inherited from UNION-FIND, forwards nodes, while COMP-
ARC-LIST “forwards” arcs. This dichotomy is examined in Section 4.4.1, which culminates in 
the description of new unification algorithm, adapted to array TFS storage, which produces a 
simpler, more consolidated representation of the result TFS. The array TFS unifier exploits a 
simplifying guarantee offered by the storage model, resulting in the assurance that operational-
ly variant auxiliary data structures such as the COMP-ARC-LIST described in this section are not 

                                                   
48 Ace is a DELPH-IN compatible parser and tactical realization system developed by Woodley Packard. http://moin. 
delph-in.net/AceTop, http://sweaglesw.org/linguistics/ace/ 
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needed. The next section concludes the chronological review of the TFS unification literature 
with a discussion of the application of computational concurrency to the problem. 

4.2.10 Concurrent and parallel unification 
After a decade and a half of gains in unifier efficiency, research began on unification algo-
rithms that permit multiple concurrent accesses to communal input TFSes. In the terminology 
of van Lohuizen (2000), parallel unification refers to the ability to schedule multiple proces-
sors on the same unification task, whereas concurrent unification refers to the ability to sched-
ule multiple single-threaded unification tasks—involving the same grammar instance and/or 
parse chart—on multiple processors. Thus parallel unification is more fine-grained than con-
current unification. van Lohuizen provides an exhaustive analysis of the inter-CPU communi-
cation implications of finer-grained tasking. 

Any method that treats publicly visible data—such as canonical TFS instances—as read-only 
is inherently thread-safe. Unfortunately, this criterion is not met by many of the unification 
algorithms reviewed above, including Tomabechi’s quasi-destructive method, which is widely 
used. Methods which predicate their efficiency upon exclusive access to express scratch fields 
in the input TFSes are, by that same requirement, rendered unsuitable for concurrent use. 

A natural solution to this problem is to detach the scratch fields from the nodes of the input 
structures (van Lohuizen 2000). This requires adopting an efficient and perfect index which 
associates each node of a given TFS with a distinct scratch structure. Efficient means that find-
ing the scratch slot for a node should be fast, and that few of the allocated slots should remain 
unused. Perfect means that the mapping should be distinct (no slot is assigned to more than one 
node) and unique (no node is given more than one slot). 

This reduces to the general TFS feature arity problem (Section 2.2.3), to which array TFS stor-
age—presented in section 2.3—describes a solution. Over this storage, agree implements a 
new, thread-safe unifier. The agree unifier achieves this via the simple means described above: 
by detaching the unifier’s scratch slots so that input structures are not modified in any way. 
The precise method of mapping, presented in detail in Section 4.4.2, is contrasted with van Lo-
huizen’s approaches next. 

With any type of TFS storage, a simple method of detaching scratch slots is to assign a unique 
index from an integer sequence to each node of a TFS. This requires a traversal of the struc-
ture, an operation of no consequence for persistent grammar structures, but which accumulates 
a burden for structures built during parsing. Using such an index is trivial; the TFS is consid-
ered read-only, and any threads that wish to unify with the TFS obtain an array of private 
scratch slots which remain isolated for the duration of their operation. 

van Lohuizen investigates two improvements on the basic node numbering idea, and evaluates 
them in his CaLi concurrent unification parser. One scheme simply hashes the node pointer, 
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and this likens it to the array storage method proposed in this thesis, whereby scratch slot map-
pings are co-opted wholesale from the underlying array storage, which, in turn, hashes a node-
feature tuple 〈𝑞′,𝑓𝑓𝑖〉 to obtain the (array storage index of) a node, 𝑞. By piggybacking on the 
existing array storage mapping, my scheme offers the advantage that the scratch slot index is a 
free by-product of the node lookup that has to be performed anyway. 

For the second method, van Lohuizen describes a scheme of numbering nodes with relative 
offsets, such that nodes of different graphs obtain unique scratch buffers, with no collisions. As 
a happy side-effect, both schemes preclude spurious sharing, allowing the restrictions on struc-
ture sharing discussed in Section 2.2.2 to be relaxed (van Lohuizen 2001, 78). 

Returning to the discussion of van Lohuizen’s distinction between inter-unification concurren-
cy and its finer-grained sibling, intra-unification parallelism, I concur with van Lohuizen when 
he notes that a detailed research agenda for the latter seems premature: 

as long as the number of unification operations in one parse is large, it 
is preferable to choose concurrent unification. Especially when a large 
number of unifications terminate quickly…, the overhead incurred by 
[parallelism] can be considerable. (van Lohuizen 2001, 72) 

This concludes the review of prior work in TFS unification algorithms. The next section de-
scribes an unusual approach to TFS unification which was investigated during the research for 
this thesis. In particular, by describing the optimal unifier for a certain theoretical class, the 
work establishes an upper bound on the performance of single pass unification. 

4.3 n-way unification  
The emphasis in the unification literature on categorizing unification algorithms according to 
classes of copying behavior suggests an approach to unification that trivially minimizes over 
copying—the production of any structure which does not contribute to the result graph—by 
producing result structure only when it is provably definitive. For example, recalling the “lazy 
unification” work of Godden (1990), consider a lazy method—that aims to skip effort that 
might late be revised—but with perfect foresight about whether or not such revision will actu-
ally occur. With perfect knowledge of whether any given piece of substructure is be definitive 
(or not), an algorithm can ensure that every task that the unifier undertakes is productive, mov-
ing forward to either unification success—or the determination of failure. To implement this 
idea, a new unification algorithm—n-way unification—was developed and evaluated. The fol-
lowing sections describe this method. 

Although—for engineering reasons discussed at the end of this section—the method was even-
tually abandoned in favor of the two-pass array storage unifier described in Section 4.4, it per-
formed nearly as well. Results from an evaluation of the work will also be summarized. These 
are supportive of the hypothesis, suggested at the end of section 4.2.9, that the empirical con-
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siderations that originally motivated Tomabechi’s emphasis on two-pass unification may have 
since been eroded by effective unification pre-filtering. 

4.3.1 Motivation  
Despite being deemphasized in agree, n-way unification remains significant as an expression 
of two theoretical bounds on single-pass unifier performance. First, depending on interpreta-
tion—discussed below—the method exhibits neither early copying nor over copying. Second, 
the algorithm traverses the theoretically minimal number of links (that is, issues the minimum 
number of recursive calls) required for a unification operation. Specifically, worst-case node 
visitation is 𝑂(𝑛) in the number of input arcs, regardless of the number of reentrant nodes. It 
achieves this by consolidating the complete, arbitrarily-sized set of reentrancies into a single 
high arity function call. UNION-FIND based methods tend towards 𝑂(𝑛2), because dereference-
before-forward can involve following a chain through 𝑛 − 1 nodes (in the worst case) for each 
node. This analysis matches the intuition that, in a duplex (two-way) unifier, each recursive 
function call can only join, at most, a single node to an equivalence class, and equivalence 
classes can be arbitrarily extensive. 

Because it is a single-pass algorithm—the writing pass is also the visitation pass—n-way com-
plexity is also favorable for writing the result structure, never traversing more than the 𝑂(𝑛) 
edges of the result graph. 

The key idea behind n-way unification is that it is preferable to simultaneously unify the set of 
nodes that form a coreference equivalence class. To do this requires definitive knowledge of 
whether each equivalence class has coreferences outstanding, so as to defer descending into it. 
The algorithm tracks whether an equivalence class is complete (meaning that it cannot possibly 
obtain additional members); if this is not the case the class is summarily skipped. Only when 
complete does it undertake the class’s unification, emit a definitive result node, and descend 
into its substructure. Each descent takes the form of a single variadic (variable-arity) function 
call. For each deferred class, two bookkeeping items are maintained: a list of nodes comprising 
its membership thus far, and a simple integer tally representing the number of reentrancies re-
maining until downwards descent is permitted. Ideally, the list of nodes directly implements 
the format of a variadic stack frame for the (eventual) recursive call. 

4.3.2 Procedure 
n-way unification can be outlined very simply. The algorithm traverses the argument TFSes in 
step, accumulating the n coincident argument nodes and summing their expected reentrancy 
counts (minus one, for each, to reflect the current visit), or—for previously seen nodes—
decrementing the existing sum. If this total is zero after all of the input arguments have been 
processed, then the class is definitive: no further nodes can possibly join the equivalence class, 
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and the node type will be the greatest lower bound between the class members’ node types.49 
Only in this case is the variadic gang-descent below the nodes undertaken. The accumulated 
set of nodes is simply submitted as the variadic argument set of a recursive call. In a preferred 
implementation, the set has been maintained in a form immediately suitable for this. Termina-
tion is signaled in the same way as any depth-first traversal: by completing the processing of 
all of the root node’s feature-value pairs. 

Since writing a node is definitive, as soon as this determination is made, its scratch data is no 
longer needed, and the algorithm might as well write the result node, if this can be done cheap-
ly and in a manner that permits trivial discarding. As noted in Section 4.3, doing so raises in-
teresting questions concerning the performance categorization model traditionally used in uni-
fication research. 

The tested implementation of n-
way unification does not, in 
fact, write array storage records 
in their final, persistent storage 
location, opting instead to im-
age array TFS nodes—in nearly 
final form, but without their 
hashing data—onto an upper 
stack frame of the unifier 
thread. By this technique, n-way 
unification avoids a heavy-
weight system array allocation 
in the case of failure. If unifica-
tion succeeds, the entire block 
of nearly-complete result nodes 
is copied to persistent storage 
with a single memcpy instruction, 

and the hash index is built. Because it does not perform system allocations, this seems to quali-
fy as ‘no early copying’ under the spirit of that definition, but clearly the memcpy and hashing 
would then count as a second pass, albeit a speedy one.50 

n-way unification also provides an elegant means for introducing additional TFS arguments 
during unification. This ability accommodates the formalism’s well-formedness condition 

                                                   
49 If sufficiently many diverse types are present at this step, a single multi-type GLB calculation via bit-array operations 
(Aït -Kaci 1989) may outperform multiple pairwise retrievals from a (duplex) GLB cache. 
50 This is a simple 𝑂(𝑛) loop over the array, rather than a graph traversal. 

 
Figure 13. Unpacking comparison of simultaneous-daughter versus separate-
daughter unification. The n-way unifier is used to exhaustively validate all of 
the derivations a packed parse forest. In the red (upper) line, it simulates 
duplex unification, so multiple top-level unification calls are required to 
validate binary rules. The blue (lower) line shows that validating the entire 
corpus is faster when the unifier is permitted to unify binary rules all at once. 



73 
 

(Section 2.1.5), and, by permitting the simultaneous unification of all of a rule’s daughters,51 
also improves the efficiency of validating derivations in a packed parse forest. The improve-
ment is shown in Figure 13. Simultaneously unifying all of a rule’s daughters with a single uni-
fier operation improves total parse time for the ‘hike’ corpus by 13% 

The main cost of n-way unification is that each TFS that participates in unification must pro-
vide to the algorithm an accurate set of tallies corresponding to the number of reentrancies ex-
pected for each coreference.52 Although there are administrative costs to maintaining these 
structures, each invariant set is trivially produced during the (n-way) unification that creates 
the structure it summarizes, and is thereafter valid for that structure’s lifetime. For the prolifi-
cally referenced structures that constitute the grammar itself, the amortized cost of computing 
these tallies is zero. 

The method summarily skips incomplete classes, and this leads to a surprising and useful prop-
erty: with monotonic traversal alone—no backtracking—there is an adequate completeness 
guarantee. Walking forward through the input structures, any skipped node will always be 
found accessible via some outstanding reentrancy—in the remaining unvisited structure—of 
some argument TFS. This is the condition which limits the worst-case traversal to 𝑂(𝑛) in the 
total number of input arcs. Input structures with cyclic (or more relevantly—‘mutually-
cyclic’—since the DELPH-IN formalism does not permit cycles in any completed, well-
formed structure) coreferences violate the condition, but these cases are easily detected: if, up-
on reaching the end of the traversal, any classes have non-zero reentrancy counts, then this can 
be taken as a true positive indicator of unification failure owing to cyclic structure, with the 
peculiarity that the exact failure path is not necessarily known. 

The case described above—failing to visit substructures that express mutually cyclic corefer-
ences—occurs quite infrequently, even in large grammars such as the English Resource 
Grammar. But the case does highlight another illuminating characteristic of the n-way method: 
on the one hand, unification unnecessarily proceeded to completion, when perhaps it could 
have been abandoned earlier had the cycle been detected. But on the other hand, a potentially 
large chunk of substructure was skipped in reaching this ‘completion.’ Whether this obscure 
trait is an advantage or a disadvantage, therefore, will be grammar-dependent. 

4.3.3 Evaluation 
Evaluation of n-way unification was undertaken by comparing it to an earlier unification im-
plementation which was available in the agree grammar engineering system. In fact, the array 

                                                   
51 While the improvement is applicable to unpacking, it is not generally useful in parsing, where the daughters of binary 
(or higher arity) rules must be unified individually so that partial structures (“active”  edges in the parse chart) that sup-
port the pursuit of alternate parse hypotheses can be retained. 
52 This is the number of immediate arcs leading to a coreferenced node, not the number of TFS paths leading to the node. 
The latter can be greater than or equal to the former. 
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storage method and its accompanying unifier represent the fourth iteration53 in the design and 
development of agree’s unification. Figure 14 compares the n-way unifier with the second uni-
fier in this sequence, an implementation of Wroblewski’s incremental method. 

4.3.4 Classifying unifier performance 
The nature of n-way unification confuses the discussion of early copying and over copying. 
Recall the comparison with the “lazy” method mentioned in Section 4.3, the introduction to n-
way unification. When every 
step in unification algorithm 
is provably useful, it seems 
foolish not to produce the 
result structure along the way 
(if it can be done very cheap-
ly) even if failure is eventual-
ly determined. Because the 
algorithm never returns to a 
node once it is written, writ-
ing the result could be con-
sidered a substitute for the 
manipulation of the scratch 
fields of other methods, an 
activity which is apparently 
exempt from categorical re-
view. 

It is worth examining why such an approach should appear to challenge de facto unification 
research dogma, which holds that no result structure should be produced if unification does 
eventually fail. The chief question raised here is, precisely what distinguishes “result structure” 
in the definition of over-copying, and why should its production be treated differently than the 
manipulation of temporary “scratch” fields by the categorization model? 

At issue is the nature of the control data which every unification algorithm carries to facilitate 
its operation. The same measurement bias which ignores the manipulation of scratch fields as a 
performance hazard category allows the n-way method to wholly subvert the informal perfor-
mance model. By taking the injunction against over-copying to an extreme, the n-way tech-
nique demonstrates a weakness in the model. Methods with substantial and complex control 
                                                   
53 This does not include a fifth implementation, a variation of the n-way code which proceeds only downwards on the 
thread’s call stack, so that when passing out of the traversal, the result TFS is entirely encoded on the deep set of calling 
stack frames. The method, which completely eliminates the need to pre-allocate scratch structures, has the advantage that 
the size required for the TFS becomes known at that deepest stack frame. The persistent storage for the actual final TFS 
is allocated at that time and the TFS is realized at each step of returning from the nesting. After completing a working 
prototype, I abandoned the method because evaluation suggested the overhead of traversing 𝑂(𝑛) stack frames (in the 
number of result graph nodes) would be limiting. 

 
Figure 14. Intra-agree evaluation of n-way unification vs. incremental 
unification (Wroblewski 1987) for parsing and exhaustively unpacking a subset 
of the ‘hike’ corpus. Multi-threaded, dual pipeline (MT p2) vs. single-threaded 
octal pipeline (ST p8). Methodology details are given in Chapter 5.  n-way 
outperforms the incremental method, especially when multi-threading with long 
input sentences. For comparison purposes, note that the array storage unifier 
presented in this thesis completes this particular task in 35.4 seconds (MT p1). 
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structures, like n-way and Godden’s (1990) lazy method subvert the model by deploying ana-
lytical techniques which make too much effort to reduce high-profile performance hazards, and 
thus succeed only in shifting complexity to obscure hiding places. Accordingly, the field may 
benefit from the development of a more rigorous unifier performance evaluation model.  

4.3.5 Summary 
To conclude the discussion of n-way unification, I mention some engineering details that sig-
nificantly hampered the implementation. The preceding discussion does not describe the man-
ner in which the variadic function call is implemented, and this is critical to the performance of 
the method. Although the algorithm is theoretically elegant, efficient implementation in the 
CLI runtime environment proved a challenge. That the n-way method nearly matches the per-
formance of the two-pass array storage unifier is surprising, because the source code for the 
former is so much more belabored and overwrought. Either algorithm could have been carried 
forward in agree, but—even discounting the need to maintain per-TFS coreference tallies, 
which I generally did not consider a demerit against n-way unification—in the end, the n-way 
implementation just required too many unappealing platform-induced workarounds.54 

Future work will investigate whether the theoretical elegance of n-way unification survives 
better under alternative tooling. In any case, the result supports the hypothesis, mentioned at 
the beginning of this section and detailed in Section 4.2.9, that unification pre-filters have 
eroded the original motivation for two-pass unification to such a degree that the overhead of its 
extra traversal has become a more significant liability, allowing efficient single-pass methods, 
such as n-way, to become relevant again. In effect, pre-filtering increasingly serves the func-
tion of the first pass and diminishes the effectiveness of strategies that incorporate a failure-
based elimination pass. 

The next section presents the new unification algorithm adapted for the array TFS storage pre-
sented in Section 2.3. This unifier supports concurrent operation and improves on Tomabechi’s 
method by eliminating the need for post-initialization operationally-variant list structures such 
as the COMP-ARC-LIST. 

4.4 Array TFS unification 
This section describes a unifier adapted to array TFS storage. Like Tomabechi’s (1991, 1992) 
method, the technique is based on UNION-FIND, the 1976 technique introduced in Section 4.2.1 
and described in Section 4.2.9. The array storage unifier differs from Tomabechi’s method in 
several ways. A key contribution of the new method is a novel method for indexing detached 
scratch slots, so as to permit concurrent unification. 

As noted in the Section 4.2.10, while the algorithm is universally thread-safe, it is also passive, 
meaning that it has no provision for dispatching additional sub-tasks to assist with a portion of 

                                                   
54 A charitable description of the ugly hacks and kludges involved. 
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the unification job with which it was initially charged; nor does it capture or retain threads for 
any purpose. It permits concurrency only by virtue of its thread-safety; and becomes concur-
rent only as so-utilized by the caller. In agree, the caller is most often the concurrent chart par-
ser, which in fact heavily exploits the unifier’s thread safety by deploying numerous simulta-
neous unifications. 

A second contribution of the new method—related to the scratch slot assignment technique—is 
a method for the elimination of excess bookkeeping structures. Section 4.2.9 observed that, in 
Tomabechi’s method, the forwarding pointer mechanism and the COMP-ARC-LIST mechanism 
seem, to a certain degree, to overlap. This section completes the earlier analysis, presenting a 
non-destructive, two-pass unification algorithm that exhibits no over-copying and does not 
maintain a list of extraneous arcs for each result node.  

Notably, a powerful guarantee emerges when invariant arity mappings are co-opted from the 
array storage system for use as pre-made structural descriptions of each input argument. Ulti-
mately, the guarantee allows the unifier to adopt a simplified conception of its task as one of 
selecting from the small number of options available at each node—as opposed to the more 
conventional idea of a unifier as an algorithm that must be able to “build” new structure. Freed 
of excess data structures which anticipate the synthesis of arbitrary new structure, the complete 
and essential work product of the unifier is reduced to a single set of scalar forwarding pointers 
relative to its array of scratch fields. In short, the guarantee is that the result structure is neces-
sarily latent within the joint set of array storage layouts of the TFS arguments, from the very 
instant they are co-opted, and so there is always a sufficient read-only substrate available, 
ready-made for efficiently expressing the result structure prior to the start of the operation. 
Naturally, this implies that no manner of operationally variant allocation is needed, and the 
progress of the operation itself is generally streamlined. 

4.4.1 COMP-ARC-LIST 
In Tomabechi’s quasi-destructive unification, the function of the COMP-ARC-LIST is to gather, 
for each node in a TFS, zero or more feature-value tuples which are required in the output 
node, but which are not present in the designated representative node. The need arises in two 
situations. Consider the unification of nodes 𝑞 and 𝑟. In the first situation, neither 𝑞 nor 𝑟 con-
strains a set of features which is a superset of the other: 

 |𝜋𝑓(𝑞.𝐴) ∪  𝜋𝑓(𝑟.𝐴)| > max(|𝑞.𝐴|, |𝑟.𝐴|). (4.1) 

In a second situation, the type unification result between two nodes is a type which is identical 
to neither of the argument nodes’ types: 

 𝑞.𝑡𝑡 ⊓ 𝑟.𝑡𝑡 = 𝑔,𝑔 ≠ 𝑞.𝑡𝑡,𝑔 ≠ 𝑟.𝑡𝑡. (4.2) 

When this situation occurs the well-formedness requirement is triggered, meaning that the ca-
nonical constraint for type 𝑔 must also be unified with 𝑞 ⊓ 𝑟. In either situation, neither 𝑞 nor 
𝑟 contains a complete set of slots sufficient for holding the features needed in the result. Alt-
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hough the Tomabechi method wisely seeks to avoid allocations during the compatibility check-
ing pass, it does need to somewhere maintain a consolidated set of features for each developing 
result node. Since only one of the nodes can be designated, its list of arcs is supplemented with 
those from the COMP-ARC-LIST. 

My analysis begins with equation (2.19) in Section 2.2.3, repeated here, which suggested an 
informal conception of TFS storage where features alternate with nodes: 

 ((𝑞 𝑓𝑓), (𝑞 𝑓𝑓), (𝑞 𝑓𝑓) … ) (4.3) 

In Tomabechi’s method, each node 𝑞 contains a forwarding pointer, deployed as an in situ 
scratch field, which allows the unifier to forward any node to another. Meanwhile the COMP-
ARC-LIST mechanism handles the features (or ‘arcs’) needed—but not available in—the target 
of the node forwarding. 

Consider now if unifier scratch slots, rather than existing within each node, were instead avail-
able according to the groupings as parenthesized in (4.3). This shift entails that there would be 
a unifier scratch slot corresponding to every feature arc, as opposed to every node. This, in 
turn, means that it is a feature arc, rather than node containing it, that contains the scratch 
fields for the node it leads to—and that a separate mechanism for temporarily storing forward-
ed arcs, the COMP-ARC-LIST of the prevailing method, would be unnecessary. 

An immediate problem with this idea is that a coreferenced node has several feature arcs lead-
ing to it, and it is not clear which of these should serve as its unique scratch slot. But this issue 
is reminiscent of how array TFS storage, as detailed in section 2.3.4, replicates, by-value, a 
given coreferenced out-tuple for each feature arc—or in-tuple—that references it. The design, 
whereby graph reentrancy is modeled by the (value, as opposed to referential) equality of out-
tuples across relation 𝔸, and where conflation of coreference thus becomes a task external to 
the storage paradigm, actually matches the shifted scratch slot condition suggested here for 
simplifying Tomabechi’s algorithm.  

It should now be clear that the key insight is for the unifier to exploit the pre-existing storage 
layout of any given array storage TFS—to be precise, its in-tuple hash table—for the purpose 
of arranging a unique scratch slot for each feature arc in that TFS. In doing so, the new unifier 
assumes responsibility for ensuring the conflation of joined out-tuples, but because corefer-
enced nodes are marked by a flag bit in the type identifier, this is trivially accomplished. 

Each slot mapping co-opted from an array storage TFS represents a fixed grouping of substruc-
ture slot mappings which reflects the actual feature expression of some node in one of the input 
argument TFS. When superimposed on the global set of scratch slots which incorporate multi-
ple argument TFS layouts, these slot mappings can be intricately interconnected to assemble a 
representation of the result graph using only a single forwarding mechanism. 
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Because the co-opted mappings represent pre-configured, content-based retrieval keys for each 
input argument, another way to look at the idea is as a shift in the nature of the node retrieval 
key, so that it is arcs that are forwarded, rather than nodes. Because arcs (in-tuples) explicitly 
incorporate a binding to their target node, they also carry an implicit association with that (tar-
get) node’s other inbound arcs (if any—that is, if it is coreferenced). 

By carefully exploiting the existence of these pre-configured, implicit groupings, a single for-
warding mechanism can describe the result configuration. Informally, instead of a conception 
where a list of zero or more 〈𝑓𝑓𝑖,𝑞𝑖〉 tuples is retrieved from each node 𝑞′, the simplified scheme 
imagines that only a single node 𝑞𝑖 (or no node) is retrieved from each 〈𝑞′,𝑓𝑓𝑖〉 tuple. The next 
section continues with a formal treatment of the method. 

4.4.2 Scratch field mapping 
van Lohuizen importantly noted that the fundamental problem in adapting a Tomabechi-style 
algorithm for parallel operation is to associate each TFS with a set of scratch fields that are 
private to each concurrent unification operation. More specifically, within this private set, each 
TFS node must be uniquely mapped to a distinct scratch slot. Uniqueness ensures that corefer-
enced nodes are correctly conflated, and distinctness ensures that non-coreferenced nodes are 
not incorrectly conflated. 

It is obvious that, with array storage, a set of indexes is already implicit in the underlying stor-
age organization. By adding the ability to query the storage index of a 4-tuple, these can form 
the basis for identifying a detached scratch slot with each node. To facilitate the discussion, the 
relational algebra expression for an array storage 4-tuple is extended to incorporate its array 
storage index, 𝑖𝑥, 

 𝑎𝑖 = 〈 𝑖𝑥(ℤ) , 〈𝑓𝑓,𝑚𝑚𝐹𝐹〉(𝐹𝐹𝑒𝑎𝑡,ℤ) , 〈𝑡𝑡,𝑚𝑚𝑇𝑇〉(𝑇𝑇𝑦𝑝𝑒,ℤ) 〉 (4.4) 

which has flattened form 𝑎𝑖 = 〈 𝑖𝑥, 𝑓𝑓,𝑚𝑚𝐹𝐹 , 𝑡𝑡,𝑚𝑚𝑇𝑇 〉. As before, this notational extension does not 
imply a change in the underlying storage. In this case, rather, the notation is extended by mak-
ing explicit an intrinsic property of the storage. 

Although the set of node-index mappings 

 π
𝑖𝑥, 𝑚𝑇

𝔸 (4.5) 

satisfies the distinctness requirement, it does not ensure that each node has a unique index. Re-
call that, in array storage, the single 4-tuple which corresponds most canonically to a particular 
node 𝑞 is not contained in the set of 4-tuples selected by its out-mark: 

 σ
𝑚𝐹 = 𝑞.𝑚

𝔸 (4.6) 

This expression selects a number of array storage rows which represent the feature-value pairs, 
or onward ‘arcs,’ for 𝑞, but the storage location for the node itself, that is, a row which stores 
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its type, cannot be recovered without further maintaining context. To be precise, we seek one 
of the 4-tuples selected by a governing node 𝑞′ and one of its appropriate features, 𝑓𝑓′: 

 σ
𝑓 = 𝑓′ ∧ 𝑚𝐹 = 𝑞′.𝑚 ∧ 𝑚𝑇 = 𝑞.𝑚

𝔸 (4.7) 

Although each row selected by this expression contains the same out-tuple value—specifically, 
〈𝑞.𝑡𝑡,𝑞.𝑚𝑚〉, or simply 〈𝑞.𝑡𝑡,𝑚𝑚〉—there may be multiple such rows, each representing different in-
tuples belonging to different nodes 𝑞0′ … 𝑞𝑛′ . These represent the one or more feature paths 
from 𝑞𝑖′ to 𝑞. This is no problem for ordinary TFS access, where value identity amongst the 
out-tuples is sufficient to guarantee correct behavior—after all, the copies are indistinguisha-
ble. In fact, the fundamental design of array TFS storage scheme is optimized to serve precise-
ly that case: by having an identical copy of the out-tuple installed at each feature path, an addi-
tional join or array fetch is avoided, per access. But when these nodes’ array storage indexes—
rather than their values—are examined, the illusion of identity, or referential equality, is lost, 
violating the uniqueness condition required of a scratch slot mapping.  

Summarizing this, the underlying reason that a node’s array storage index is not ready-made as 
a scratch slot index is that the set of out-tuples is not a true relation. In order to avoid an extra 
join operation and an extra object allocation, array storage fuses the in- and out-tuples into 
permanently bound 4-tuples, with the result that coreferenced out-tuples are explicitly dupli-
cated. To clients of the array storage system who receive and process out-tuples (and the mark 
values they contain) this fact is invisible, because numerical mark values naturally conflate. 
But consumers of the array storage index experience that the index values for nodes that are 
supposed to be coreferenced are not conflated; each is reported as having a distinct index de-
pending on the governing 4-tuple from which it was reached. If the unifier wishes to co-opt 
array TFS storage indexes for the purpose of scratch slot mapping, it concomitantly assumes 
the responsibility for the conflation of coreferenced nodes. 

One way to effect this conflation would be to privilege one of the rows by fiat. For example, 
one could specify that the lowest index value 

 minσ𝑎.𝑚𝑇 = 𝑚𝔸 𝑎. 𝑖𝑥  (4.8) 

serve as the scratch slot index for the set of all rows which contain 〈𝑞.𝑡𝑡,𝑚𝑚〉. With such an edict, 
scratch slot uniqueness is restored, and unification will correctly experience the conflation of 
coreferenced nodes. This particular solution, however, is not workable. When working with 
node 𝑞 = 〈𝑡𝑡,𝑚𝑚,𝐴〉, the relevant storage index is the index from which the governing out-tuple 
〈𝑞′.𝑡𝑡,𝑞′.𝑚𝑚𝑇𝑇〉 was retrieved. This is the origin of 𝑡𝑡 and 𝑚𝑚, passed down from a higher caller, and 
incorporated as 𝑞 = 〈𝑡𝑡,𝑚𝑚, … 〉.55 Certainly 𝑞′.𝑖𝑥 could be passed down from the caller along 
with 𝑡𝑡 and 𝑚𝑚. But a more serious problem foils the fiat plan: there is no practical way for the 
callee—or the caller, in fact—to determine whether 𝑞′.𝑖𝑥 has the lowest value amongst its set 

                                                   
55 Recall that the storage indexes associated with rows 𝑞.𝐴, which are easily accessible, are unrelated to the notion of a 
canonical array location for 𝑞. For one thing, there may be no such rows. 



80 
 

of matching out-tuples, because this set is not available. The set would be expensive to com-
pute, and is of no use to general-purpose TFS operations. 

A second solution to the index uniqueness problem—which reflects the implementation of the 
system evaluated in Chapter 5—takes advantage of the convention that coreferenced out-tuples 
are always given a mark values less than zero. As is required in order to co-identify nodes 
which are coreferenced, a unique negative mark value is assigned even when the type of the 
node has no appropriate features, which would normally require that the mark value be zero. 
The details of this were discussed in Sections 3.2 and 3.2.3. By giving special treatment to 
rows where the mark in the out-tuple is negative, clients who use storage indexes for their own 
purposes—such as the unifier described here—are able to manually effect the necessary con-
flation of nodes. Further details are given in Section 4.4.4, which describes scratch slot manip-
ulation.  

The latest implementation of agree implements the most elegant solution to the problem.56 In 
this method, also mentioned at the beginning of Section 4.5, the unifier simply uses its own 
forwarding mechanism to restore the referential equivalence, within its scratch slots, of the ar-
ray storage out-tuples. Doing so requires an array of pointers per TFS, per coreference, that 
store the identity of the first slot that is encountered from each equivalence class and which 
serve to map the negative out-mark (treated here as an array index) into the forwarding chain 
during the subsequent encounters. Because each array TFS carries, as an invariant property, the 
number of coreferences it contains, this adjunct list is trivially established prior to commencing 
the unification, and is not considered an operational variant which would violate the tenet that 
the array storage unifier does not synthesize. The result of this scheme is that the scratch slot 
assignment for each unification argument has two sections, not three. A section dedicated to 
coreferenced nodes is no longer needed, and only a single slot (for the root node) and the main 
range which parallels 𝔸, are needed. It is clear by now that unifier scratch slots are key to most 
unification algorithms. The next section discusses scratch slot allocation and the discarding 
problem. 

4.4.3 Scratch slot initialization and discarding 
A major difference between array TFS storage and van Lohuizen’s approach to scratch slots is 
that van Lohuizen maintains a limited set of scratch buffers in a single, global pool. While it is 
crucial that frequent allocations be avoided, this solution introduces contention for the leased 
slots in the common pool amongst concurrent unification threads. Also facing contention is the 
global generation counter value which controls the invalidation of every slot in the pool. 57 

                                                   
56 The technique described in this paragraph is not included in the system evaluated in Chapter 5. 
57 Shared, writable scalars such as the generation counter usually benefit from being padded so as to preclude false shar-
ing. CPU cache lines nowadays are 128 or, more commonly, 64 bytes. Absent complier alignment directives, padding a 
4-byte integer into a dedicated cache line entails placing inert, dummy entities of 60 (or 124) bytes on both sides of the 
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One method, used in the tested implementation of agree, deploys the entire scratch slot array 
on the stack. For each unification operation, an initialization function subtracts a value from 
the stack pointer, allocating a block of memory in the topmost frame of the unifying thread’s 
stack. The entire scratch buffer is organized in this buffer as a contiguous array. Stack-based 
allocation eliminates a costly system allocation cycle per unification and trivially gives each 
unifying thread a private set of scratch slots, eliminating the need for centralized coordination 
of scratch slot leasing. Naturally, with stack-based allocation, the entire set of scratch slots is 
instantly discarded, in the case of unification failure, with a single subtraction instruction. In-
deed, this subtraction is implicit and automatic upon execution returning to the caller. 

The first call which starts the recursive unification, proper, is initiated from within the initiali-
zation function, so pointers to the scratch buffer are accessible to, and valid throughout, any 
call below the initialization function. These frames access these fields via direct pointers to the 
initialization frame. The buffer automatically disappears only when the unification is complete. 

A disadvantage of this method is that the second pass—the realization or writing pass, which 
traverses the scratch slots to produce a result TFS—cannot be deferred, a technique used in 
“hyper-active” parsing (Oepen et al. 2000). This is because there is no way to prevent the loss 
of the stack frame when the unification function returns to its caller. Also, when we root out 
exactly where the task performed by the generation counter ‘went,’ we find that the function of 
the generation counter is simply hidden: security considerations in the runtime platform mean 
that it is not possible to opt-out of the zeroing-out of the memory block that is allocated from 
the stack as described. Although the runtime environment probably effects the clearing with a 
fast block-storage processor instruction—or perhaps even an outboard direct memory access 
(DMA) executor—the courtesy surely comes at some cost. 

The reason I detail this point is that the array storage unifier is substituting the function former-
ly performed by the generation counter with this runtime guarantee. The generation counter is 
not needed in array storage because each unification operation gets a fresh set of scratch slots 
which can never be contaminated with abandoned values. Because memory-clearing applies to 
every type of allocation, it is difficult to avoid this platform-dependent penalty without explic-
itly managing long-term buffers—as van Lohuizen does. The trade-off is that his method in-
vites contention where the stack method incurs none. Finally, note that zeroing a stack alloca-
tion is not automatically performed in C/C++, so adopting stack-based allocation and eliminat-
ing the generation counter would require some kind of explicit initialization pass over the slots, 
in order to distinguish their first use from randomly occurring values. 

Recent work (not reflected in the results presented in Chapter 5) has altered the scratch slot 
allocation method used in agree, and the generation counter method introduced by Wroblewski 

                                                                                                                                                          
oft-written field. These guarantee that no shared, read-only fields are placed within the volatile cache line, where they 
would be needlessly incur penalizing cache misses. 
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(1987) is now used. To permit concurrent unification, a platform mechanism called thread stat-
ic storage automatically associates—via a single object reference—a complete and independ-
ent unifier implementation with each thread. Each of these unifiers has its own private set of 
reusable scratch fields governed by a private generation counter. It is impossible for these re-
sources to be contended-for, because they are contained within the ‘unifier’ object, and this is 
always known to be privately owned. The operating system provides and efficient guarantee 
that each access to—what appears to be—a singleton, thread static ‘unifier’ object by each dif-
ferent CPU actually returns a private object invisible to the other threads. A small number of 
dedicated unifiers quickly become available for each physical CPU in the system, and remain 
active for the lifetime of the agree process, and this minimizes the costs of reinitializing the 
fixed set of resources used by each instance. In turn, by reusing a single scratch slot array 
throughout its own lifetime, each unifier is able to avoid expensive memory-zeroing penalties 
after each operation. 

4.4.4 Scratch slot implementation 
This section describes the scratch slot implementation used in the array TFS unifier. Each 
scratch slot has the form 

 〈𝑡𝑡,𝑚𝑚𝑇𝑇 , 𝑖𝑥𝑓�𝑑 ,𝑚𝑚𝑐𝑜𝑝𝑦〉(𝑇𝑇𝑦𝑝𝑒,ℤ,ℤ,,ℤ) . (4.9) 

Not shown is an additional field related to node counting: the calculation of the total number of 
nodes in a newly-unified TFS. Node counting is required for pre-allocating an empty array 𝔸 
of the exact required size, prior to the writing pass in a successful unification.58 A detailed 
presentation of this topic is not provided in this thesis, but a summary of the salient points is 
provided in Section 4.4.10. Note the absence of a COMP-ARC-LIST field; as described in Section 
4.4.1, after initialization the array storage unifier manipulates no operationally variant data 
structures, and is always able to completely describe the result structure via the 𝑖𝑥𝑓�𝑑 field 
alone. With regard to this claim, accounting for the other three fields in (4.9) is simple. 𝑡𝑡 and 
𝑚𝑚𝑇𝑇 are copies of the out-tuple. With the exception of a trivial optimization (described in Sec-
tion 4.5 on page 97) which modifies 𝑡𝑡 but is substantially unimportant, these fields remain un-
changed and can be interpreted as being related to performance-related caching. The 𝑚𝑚𝑐𝑜𝑝𝑦 
field pertains to the writing pass, which represents a trivial re-expression of the result structure 
which has already been fully described by the unification proper. It is also worth mentioning 
that, as is the case with any scratch slot traversal, reference to the set of read-only arity-maps 
of the input arguments is also needed to read-out the result structure, but these are also not 
counted as a unifier work product since they remain unchanged since before the operation be-
gan. 

To be completely precise, the set of all 𝑖𝑥𝑓�𝑑 after unification is not quite complete, because a 
starting slot value where the read-out of the result begins must also be specified. For example, 
                                                   
58 In the target platform, instances of the array primitive, the lone vehicle capable of providing adequate performance for 
this application, cannot be resized after creation. 
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in the case of mother-daughter unification, this will be unifier slot index 1, which corresponds 
(in the latest agree slot layout) the root node of the mother argument TFS. This is because the 
topmost node of the result of a mother-daughter unification will always have the type of the 
mother. Also, of course, no daughter structure is available to choose from here. 

The stack-based allocation described in the previous section, considered as a single array of 
scratch slots, is demarcated into adjacent regions of contiguous scratch slots dedicated to each 
TFS that participates in the unification. Within each of these regions, there are three sub-
regions. First, the unifier designates a special set of slots equal to the number of coreferenced 
nodes in the TFS. As noted in Section 4.4.2, rather than trying to choose one amongst the mul-
tiple scratch slots which may be reported for a single coreferenced node, in this design the uni-
fier ignores all array storage indexes selected by negative in-marks. Taken together, the nega-
tive marks for the set of coreferenced nodes in a TFS comprise a set of consecutive negative 
integers descending from -1, so no mapping is required. Any node with a negative mark is re-
directed to one of these special slots by using—instead of the node’s (non-unique) slot index—
the actual value of its mark itself to select (as a negative offset) its scratch slot, and this redi-
rection effects the conflation of coreferenced nodes. 

Immediately following the special coreferencing singletons, a single scratch slot is designated 
for the TFS root node. Because the root out-tuple is not stored in 𝔸, its array storage index is 
undefined, and therefore requires special treatment. Additional discussion of this point can be 
found in Section 3.2.1. Finally, a set of scratch slots, equal in number to the size of the array 
TFS storage, is created for non-coreferenced nodes. Note that there may be numerous scratch 
slots in this sub-region which go unused, due to the redirection of coreferenced nodes to their 
own special sub-region. These ‘holes’ are a benign condition. 

The unifier operates according to the dereference-before-forward principle from UNION-FIND 
and most later unifiers (but not n-way unification). As with all methods based on the technique, 
the 𝑖𝑥𝑓�𝑑 (forwarding) field is perhaps the most important. Forwarding between scratch slots 
observes a system which spans across the entire scratch array, encompassing all participating 
TFSes. Specifically, 𝑖𝑥𝑓�𝑑 is an integer which represents a global index of a scratch slot, or 
zero if the slot is not forwarded.59 This permits any scratch slot to be forwarded to any other, 
within the same, or any other, TFS.  

Since coreferenced nodes use their (negative) mark to directly select a scratch slot, it is worth 
describing why this technique is not used for all nodes. The answer is that, in the current de-
sign, nodes whose type has no appropriate features are always given out-mark value zero. Be-
cause of this, unilaterally using a node’s out-mark as a scratch slot index would incorrectly 
conflate all nodes of the same type across the TFS. The design whereby a zero mark value is 

                                                   
59 The first scratch slot, at global index zero, is reserved and not issued to any argument TFS. 
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given to featureless nodes is a legacy from early in the evolution of this project whose original 
motivation has been deprecated. 

Within the scratch slot region for a given TFS, a single base address provides access to all of 
the TFS’s scratch slots. From the start of the TFS’s region, this base address is given a positive 
(or zero) displacement of −min𝑚𝑇 𝐴, so as to permit direct indexing in the inclusive range 

 [min
𝑚𝑇

𝐴 , |𝐴|]. (4.10) 

The displacement allows negative mark values, which indicate coreferenced nodes, to directly 
index scratch slots in the special coreferencing sub-region. The special scratch slot for the root 
node is at offset zero from the base. Non-coreferenced nodes add one to the node’s zero-based 
array storage index to directly access slots in the range 1 … |𝐴|. During unification, a special 
array storage access mode is used to request that the array storage index, which is a free by-
product of the access, be returned along with each node access. Naturally, this index, along 
with the node’s type and out-mark, is only accessible during the feature-value enumeration 
performed by the caller. To summarize, for each argument node, three pieces of information 
are maintained: the array index of the governing out-tuple in the argument TFS, and, from the 
tuple itself, the type and out-mark. 

To process a substructure node, only a single pointer is passed down in the recursive call. This 
is a pointer directly to a single scratch slot, calculated from the TFS’s base address and an off-
set as described above. The slot index, one of the three items, is incorporated into the pointer 
itself, of course. For efficiency, the other two values which must be passed down are cached 
within the slot. Referring to (4.9), these are 𝑡𝑡, the type of the governing node, and 𝑚𝑚𝑇𝑇, the out-
mark of the governing node. The latter is combined with features appropriate to the former, 
each in turn, to select follow-on nodes. Caching the node type in the slot allows the slot to be 
more flexibly used with the fallback fetch mechanism described in Section 4.4.8. Caching of 
out-marks is also helpful because they mediate the accessibility provided by the mappings co-
opted from TFS storage, as described in Section 4.4.7 and are thus referenced frequently dur-
ing traversal.60 From a formal standpoint, however, caching the out-tuple in the unifier slot is 
not strictly necessary. 

At this point, the alert reader may quibble that caching contentful values (such as the node type 
and out-mark) in the scratch slots amounts to a form of over-copying, denounced in Section 
4.2. In fact, however, the presence of these values in a persistent portion of the stack frame is 
little different from their presence as arguments to recursive function calls. Function calls in-
volve stacking and unstacking numerous values. While acknowledging that the control triple 
discussed here contains non-opaque internal structure—and is physically wider—than a sim-
ple, opaque node pointer, it should nevertheless not be considered “copying” to pass control 
                                                   
60 They also allow an extra TFS access to be avoided when establishing the fallback condition, but this point is not de-
tailed further here. 
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information to a lower stack frame. The optimization here is simply to consolidate the multiple 
control values under a single pointer. This pointer happens to refer to an entity—an upper-
frame scratch slot—that is more persistent than a conventional function argument. The savings 
of consolidating arguments and operating exclusively on scratch slot pointers is that slots 
which undergo multiple operations during the course of an operation are prepared only once. 

4.4.5 Array TFS storage slot mappings 
Sections 4.4.1 and 4.4.2 described how array storage layouts are co-opted by the unifier for the 
purpose of organizing a set of scratch slots, but elided the issue of why these layouts have val-
ue in the first place. Surely the unifier could, on its own, arrange an appropriate configuration 
of slots. The value of the storage layouts lies in the fact that each is a pre-made arity map for 
every 4-tuple in 𝔸, essentially a feature-arity configuration customized to each TFS. Each 
mapping provides slots for the constrained features associated with every node. Taken by node, 
each of these subsets can be chosen as a standalone slot-mapping for that set of features. For 
each argument TFS, the proper number and type of slot mappings are already laid out, which 
means that each has a complete schema that is fully established and available prior to starting 
the unification operation. 

A slot mapping is defined as the subset of slots (represented as slot indexes relative to some 
array storage TFS) that are obtained with a particular out-mark value (again, from that TFS). 
This is the familiar set σ𝑚𝐹=𝑚(𝔸), augmented now with (notational) array storage index val-
ues. 

Slot mappings, which are each local to their TFS, become useful to the unifier because for each 
argument TFS 𝐹𝑖 it assigns a global range of unifier scratch slots to the entire storage relation 
𝔸𝐹𝐹𝑖 (in simple one-to-one correspondence with the local index values), thus trivially and in-
stantly relating all of 𝐹𝑖’s local maps into the range. Scratch slots can be globally forwarded, 
crossing local TFS boundaries, enabling the unifier is able to assemble a patchwork from the 
incorporated maps which ultimately describes the unification result TFS. 

To summarize, array TFS storage internal layouts are valuable because they represent the work 
of compacting a set of mixed-arity feature-value data—the structure of a particular argument 
TFS—into a ready-made hash table. While there is no way to alter the slot mappings that this 
hash table subsumes, the unifier is free to choose a slot mapping from any input TFS that of-
fers one which is associated with type of the current node. Choosing the representative slot 
amounts to choosing the best 𝑚𝑚𝐹𝐹 where the set of scratch slots accessed by 〈𝑓𝑓,𝑚𝑚𝐹𝐹〉 is fixed. 

4.4.6 Slot mapping selection 
In this section, I show how the array storage unifier constructs the result TFS by forming a 
strategic patchwork of pre-made slot mappings. 
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The set of slots in a slot mapping is organized under a single governing slot. During the pro-
cessing of feature-value pairs, this is the view looking “upwards” (i.e. towards the TFS root, 
backwards over structure just traversed). Looking “downwards” (i.e. towards the next iteration, 
forward away from the TFS root) invokes a different sense: for each feature-value pair, a rep-
resentative slot is chosen, based on the slot mapping it offers, over other available slot map-
pings. The representative slot becomes the governing slot for the node’s substructure. At any 
given time, then, there is a single governing slot, and the task at hand is to iterate over feature-
value pairs, choosing representative slots. 

It is important to realize that the choice of slot mapping does not alter the possibility of choos-
ing representative slots from either input argument—or a mixture from both—amongst the 
joint set of feature-value pairs. Consider how a governing scratch slot denotes some list of fea-
tures beyond those referenced by its corresponding slot mapping. In grammars with a feature-
appropriateness condition, this might mean switching the slot’s current type to a (more con-
strained) subtype, so that a larger set of features becomes appropriate. Conceptually, increasing 
the set of accessible features is a simple matter of changing the slot’s type. Recall from Section 
2.3.6 that, in array storage, doing so results in the instantaneous appearance of unconstrained 
nodes 〈𝑓𝑓,⊤〉 for the enlarged feature set; we have expanded the accessibility that the mapping 
provides. This does not suggest a solution for the current problem, however, because these 
“chimeric” nodes, being synthetic, have no storage index and hence no scratch slot of their 
own. 

Nevertheless, the preceding example is instructive, because it illustrates that the choice of rep-
resentative slot only establishes the accessibility (or governance) of a set of scratch slots via 
some out-mark. Some of these—or all, or none—may be designated as representatives (versus 
being forwarded to a representative) themselves. But beyond providing access to a fixed 
grouping of scratch slots, the mapping constrains nothing. The task of the unifier is to desig-
nate, as governing slots, a subset of the predefined, fixed set of slot mappings offered by the 
argument TFSes, and arrange them such that the resulting accessible substructure corresponds 
to the result TFS. 

Any mapping that provides slots for the set union of constrained features between the argu-
ments can be selected—regardless of the contents of nodes it selects in its argument TFS. 
Those contents never affect the choice of mapping because the type of any unifier scratch slot 
can be arbitrarily changed, and each slot selected by the chosen mapping can be forwarded to 
reflect the necessary substructure. Therefore, the choice of mapping is based solely on the fea-
ture accessibility offered by the mapping. 

A problem case arises when none of the available slot mappings have an out-mark which offers 
slots for the complete set of required features. This is the disjoint coverage problem, discussed 
in the next section. 
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4.4.7 Disjoint feature coverage 
To summarize the issue and the discussion thus far, the task of the unifier is to construct an 
arrangement of slot mappings that makes a unique scratch slot accessible for every node re-
quired by the result feature structure. We recalled that for attaching data to a set of variable-
arity features, array TFS storage uses the technique of predicating TFS node extraction upon 
the grammar’s feature-appropriateness condition. But this does work for the unifier’s problem; 
since slot mappings are co-opted from array storage layouts, they do not report valid slot in-
dexes when queried with features newly appropriate to the subsumed type, or which were not 
stored for any other reason. Although we can expand the accessibility that a mapping provides, 
we cannot give it slots that it did not originally have. 

Array TFS unification begins by reducing the frequency of the problem in two ways. First, be-
cause unification is commutative, cases of disjoint feature coverage can be further reduced by 
unifying-in the well-formedness constraint prior to unifying the subsuming argument nodes. 
For example, if 𝑞.𝑡𝑡 ⊓ 𝑟.𝑡𝑡 = 𝑔 and the root node of canonical constraint TFS 𝐺 is node 𝑠̅, then 
unification can proceed according to 𝑞 ⊓ 𝑠̅ ⊓ 𝑟, as opposed to 𝑞 ⊓ 𝑟 ⊓ 𝑠̅. Because   

 |⋃𝑓 ∈ FEAT, Approp(𝑓,𝑞.𝑡)↓ | ≤ |⋃𝑓 ∈ FEAT, Approp(𝑓,𝑔)↓ |  
|⋃𝑓 ∈ FEAT, Approp(𝑓,𝑟.𝑡)↓ | ≤ |⋃𝑓 ∈ FEAT, Approp(𝑓,𝑔)↓ |  

and 
, 

(4.11) 

𝑠̅ is most likely to express the greatest coverage of features expressed at the result node.  

Second, the decision of which slot to select as the representative is made only after examining 
which of them provides the slot mapping with the most coverage. By tallying the number of 
features found in 𝑞 but not 𝑟—and vice-versa—the slot mapping which provides the greater 
coverage is always selected.61 Note that we evaluate each slot based on how well it would 
work in role of governing its substructure, even though here we are selecting the representative 
slot. After being selected, the type stored in the representative slot is updated to reflect the run-
ning type unification result. This is the current type for the equivalence class represented by 
the joined scratch slots, and this type always carries precedence over the type values in for-
warded slots or the type values in their original argument TFSes. 

If for every node 𝑞, array storage physically stored a value for every feature that is appropriate 
for 𝑞.𝑡𝑡, then the two techniques detailed above would be sufficient to guarantee that at least 
one of the two nodes being unified would have an equal- or superset of the other’s features. A 
slot mapping which covers the maximal set of appropriate features at each node would always 
be found. This is not necessarily the case in the array storage design described in this thesis, 
where unconstrained feature-value pairs 〈𝑓𝑓,⊤〉 are stored only when they are coreferenced (but 

                                                   
61 This implies that the node forwarding decision is deferred—and no forwarding enacted—until outbound from depth-
first traversal. Tomabechi (citing Marie Boyle at the University of Tuebingen) notes that this deferral, which was in effect 
in his 1992 algorithm, is incompatible with the successful unification of cyclic structures, so he switches to inbound for-
warding in his 1993 method. The consideration does not affect the current work, which assumes a formalism that prohib-
its cyclic structures. 
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see footnote 37 on page 46). This allows the disjoint coverage problem to persist in rare cases, 
as it is possible for arbitrary scratch slots to be missing by virtue of one of the input nodes 
leaving a feature neither constrained nor coreferenced.  

4.4.8 Fallback fetch 
This section continues the discussion of the solution to the problem of insufficient coverage 
amongst the available feature maps at a given node during unification. Because the motivating 
problem has been obviated by recent modifications, the method described in this section is no 
longer used by agree, but the section is retained since it accurately describes the implementa-
tion which is evaluated in Chapter 5. The more recent solution is summarized in footnote 37 on 
page 46, and proceeding directly to Section 4.4.9 will not significantly disrupt the narrative. 

Disjoint coverage can occur either because the TFS from which the mapping was co-opted did 
not store a constraint for the feature, or because the type in the mapping’s scratch slot has been 
changed to a subtype of the value that was originally present in the source TFS. The mitigation 
techniques described above reduce instances of the problem but do not eliminate it entirely. To 
address the remaining cases, a mechanism dubbed fallback fetch is used.  

The method follows from the observation that every feature that ends up needing representa-
tion in governing node’s set of features—because it is constrained—must ultimately originate 
from one of the input structures. What is needed is a way to designate one of the parent slots 
for that node as an alternate to the selected governing slot. Accordingly, in the array storage 
unifier, the slot forwarding mechanism is enhanced so as to permit an alternate forwarding 
condition to be signaled, if necessary, and this feature is activated whenever the best available 
slot mapping is missing a slot index for one or more features that are appropriate to its type. 
After being set for a slot, the fallback fetch condition asserts that, for any features that are 
found to lack coverage in the primary mapping, all future feature queries will query one or 
more backup slot mappings. 

In short, the array storage unifier provides the ability for a representative slot to signal that zero 
or more additional mappings be used as backup slot mappings. The mechanism is only activat-
ed by the unifier in the rare case when the representative slot, which has been chosen so as to 
maximize its feature coverage, is found to lack coverage for a feature for which one of the re-
jected mappings supplies a constraint. 

Note that it is not the slot of the disjoint constraint that is configured for fallback. The reason 
goes back to accessibility: fallback allows extra coverage to be discovered—which is prelimi-
nary to retrieving additional content. Ultimately, fallback fills in gaps in feature coverage, but 
it must always be configured between the feature’s governing slot (and its alternates). 

The engineering implementation of fallback fetch is described next. Note that the set of slots 
that need to be related by fallback fetch always meet the criterion that they are all already for-
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warded to the primary slot. For this reason, the implementation overloads the forwarding 
mechanism to signal the condition. To activate fallback, the forwarding chain is configured as 
a loop—rather than a singly-linked list—with the governing slot specially marked as the loop 
master. Note that only those mappings that need to supply fallback constraints for one or more 
of their subjugate feature-value pairs need to join the fallback loop. Additional singly-linked 
chains of slot mappings whose features were fully covered can still lead to the governing slot 
with normal one-way forwarding chains. 

By default, fallback is disabled, and a forwarding chain is followed until reaching a terminal 
scratch slot, respecting the dereference-before-forward procedure as normal. When activated 
for a governing slot, fallback fetch works as follows. When any query (for an appropriate fea-
ture) returns 〈⊤, 0〉, the loop is followed to an alternate scratch slot. This scratch slot represents 
an alternate mapping: it contains the mark of some alternate node—and, of course, which of 
the participating TFSes that node is in. This allows the unifier to re-query a (possibly) different 
TFS with an alternate mark value, and the same feature 𝑓𝑓. If successful, this operation returns 
an array storage index (or negative mark value) which selects a scratch slot which controls the 
substructure below 𝑓𝑓 (or is forwarded to the same). In the extremely unlikely event that the 
first alternate mapping does not cover the feature, the process continues with additional alter-
nates. If no alternates respond—meaning that the loop was followed back to the master govern-
ing slot—then the node is known to be truly unconstrained. 

4.4.9 Summary of the first pass 
The material contributions of the array storage unifier are confined to the first pass of the array 
storage unifier; the writing pass proceeds in a conventional way. Accordingly, before proceed-
ing to a description of the writing pass, I briefly review Sections 4.4.2 to 4.4.8, highlighting 
just the areas where the operation of the array storage unifier differs from previously published 
work. 

As in earlier methods, the new method associates a scratch slot with each node. The slot con-
tains a forwarding pointer which can indicate any other scratch slot (or none) belonging to any 
other TFS that is participating in the unification operation. Each slot also contains a current 
type, and the information necessary to access its array TFS source. These last two items are not 
formally required, and are cached for performance improvement only. Each scratch slot con-
tains, in total, six scalar values (one is used in the realization pass, and one is related to node 
counting, described in the next section), and only the forwarding pointer is logically list-valued 
(though physically scalar). Naturally, the lists implemented by forwarding—being singly-
linked lists (or singly-linked loops contained to the active scratch slots in the case of fallback 
fetch)—are allocation-free. To enable concurrent access, scratch slots are detached from the 
TFS by conscripting array storage indexes as indexes into a contiguous array of slots. 

Unification proceeds according to UNION-FIND. At each node, the unifier ensures that it choos-
es, as the representative, the slot mapping which covers the most features. Only actual cover-
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age is evaluated for this decision. The unifier also enacts the well-formedness unification, if 
required, on one of the input nodes prior to unifying the actual arguments. This increases the 
likelihood of a complete coverage map being found—in the well-formedness TFS. Both of the-
se techniques are optional, but they reduce the frequency with which fallback fetch must be 
established, and fallback fetch is expensive.62 

After mitigation, if the representative slot provides full coverage, then normal, one-way for-
warding is established from the non-chosen slot to the representative. Despite mitigation, how-
ever, incomplete coverage can still persist, owing to the array storage design where non-
coreferenced ⊤ nodes are never stored. In this case, a special forwarding relationship is estab-
lished between the “master” governing slot and one or more alternates, to signal that an alter-
nate mapping must be consulted whenever the master slot fails to cover any feature appropriate 
to its type. This incurs extra lookups, but by having selected the slot which provides the most 
coverage, these cases are rare. The special forwarding relationship, the presence of which sig-
nals the need for the fallback lookup, is that the master’s forwarding pointer is non-zero, and in 
fact, is part of a forwarding loop. 

4.4.10 Node counting 
Prior to writing any new structure, the array storage unifier must allocate a fixed-size array to 
accommodate the tabular storage. This entails that the number of nodes in the new structure be 
known after the initial unification pass. During the first pass, a mechanism not described in 
detail in this thesis monitors how many nodes the result structure will contain. Unfortunately, it 
is not trivial to determine the number of nodes in a result structure when the unifier has 
skipped over sections of substructure due to the application of feature restriction or rule-
daughter truncation.63 Furthermore, coreferencing can join structures containing substructures 
that were previously joined, and those portions must not be counted twice when determining 
how many nodes to subtract from the running total. Another complication is that nearly all 
parsing unifications involve three entry points (the tops of the candidate and mother TFSes, 
respectively, plus the daughter ARG position within the mother). Obviously two of these are 
within the same TFS, and this should not lead to double-counting. 

But most problematically, the seemingly harmless array storage design—wherein out-tuple 
〈⊤, 0〉 is never stored—creates (at least) two additional complications: first, merely applying a 
                                                   
62 Avoiding the activation of fallback fetch is desirable because it is a blunt instrument: if needed due to the lack of cov-
erage for just some single feature, it must be activated on the governing (i.e. mother) slot and thus affects all of node’s 
features; even those features which none of the argument TFSes care to constrain will be exhaustively queried.  
63 Note that the unifier’s introduction of additional TFSes for the purpose of enforcing well-formedness is not necessarily 
a category of problem here, since total visited nodes are easily counted; see Section 4.4.10. In general, the problem occurs 
because an efficient unifier will not bother—in its first pass—to visit below any structure that only one of the input struc-
tures constrains. Static analysis of the input structures does not help: the amount of restriction in a result TFS is not relat-
ed to the (invariant) amount of the restriction in the input TFSes. To see this, consider rule-daughter pruning: any coref-
erence in a rule (mother) that spans both above and below the daughter entry (i.e. ARGS) allows the daughter to join—
and/or publish to the result TFS—arbitrary sections of the mother’s substructure, and these sections might contain nodes 
that are subject to restriction, while not being subject to pass 1 visitation. 
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type to an unconstrained node—even if the new type has no appropriate features—requires the 
node count to be incremented. Failing to account for this case results in undercounting, which 
is fatal because the realization pass will run out of array storage entries. 

Second, when structures are joined such that existing coreferences in their substructure become 
vacuous, and when these newly non-coreferenced 
nodes also happen to be unconstrained, the total result 
node count must be decremented—because now a re-
sult node will not be stored. For example, consider the 
unification of feature structures 𝐶 and 𝐷 in Figure 15. 
In the result TFS 𝐸, the coreference between paths 
𝐺.𝐹 and 𝐻.𝐹 established by TFS 𝐶 has become vacu-
ous because the two paths are no longer distinct. The 
issue is important in agree, where every node carries a 
bit that indicates whether or not it is coreferenced. Any 
error in the correctness of this bit is considered unre-
coverable corruption. 

For the unifier’s application of node counting, this very rare case—which results in over-
counting—can safely be ignored. The benign but unaesthetic result is that storage relation 𝔸 
ends up with one or two extra unused rows—out of several hundred—in some TFSes. 

For these and other reasons (primarily related to feature restriction), node counting is a chal-
lenging aspect of the array storage unifier. It is also the case that node counting worsens the 
theoretical complexity of the unifier, because it requires pursuing unary descent—to count 
nodes below singleton nodes in an input argument—in some cases. Absent node counting, the 
unifier could simply ensure that unary substructures are accessible in the governing slot map-
ping, and skip over the node, without descent. 

Whether by explicit counting or some other method, the array storage unifier requires—after 
the completion of the first pass—some estimate of the (maximum possible) size of the result 
structure. In the target runtime environment, arrays, once allocated, cannot be resized, and real-
ization cannot begin until the destination array has been allocated. Therefore, without node 
counting during the first pass, the implementation would require three-passes; an additional 
traversal of the entire result structure (as manifested in the scratch slots) would be needed in-
between the first and second passes. As noted throughout Section 4.4 and in footnote 37, recent 
work in array TFS storage has modified the design so that the storage of unconstrained, non-
coreferenced nodes is no longer prohibited. Eliminating the special treatment of this case has 
enabled several simplifications, but as the discussion of this section has shown, accurately pre-
dicting the number of nodes in a unifier result structure is one area where the potential for sim-
plification is considerable. At this time, examination of this problem is an area of very active 
investigation. 

 

 

Figure 15. Coreferences can become vacuous 
during the course of unification. When TFSes 𝑪𝑪 
and 𝑫𝑫 are joined giving 𝑬𝑬, the reentrancy that 
was originally authored in 𝑪𝑪 becomes moot 
since paths 𝑮𝑮.𝑭𝑭 and 𝑯𝑯.𝑭𝑭 refer to the same node. 
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4.4.11 Writing pass 
If the joint traversal completes successfully, unification success is guaranteed. Having reached 
this point, the result structure is encoded across the scratch slots, in a configuration of interwo-
ven slot mappings borrowed from the input TFSes. The second pass of the array storage unifier 
writes the final TFS. The primary task is to copy data from the scratch fields into the rows of a 
new array storage relation, and allocate a system object 𝐴 to bind together, by containment, the 
sundry chunks of data that comprise the feature structure. Most significantly, before the writing 
pass can begin, a persistent, 4-tuple array 𝔸 of the required size, as determined by node count-
ing, is allocated. Also initialized is the root out-tuple, which, in accordance with (2.33) and 
Section 3.2.1, is maintained external to the 4-tuple relation. This standalone out-tuple is created 
with the proper type and is given out-mark value 1.64 Two sequence counters, each increment-
ed away from zero, are initialized for assigning marks. The sequence for coreferenced nodes 
starts at -1 and the sequence for non-coreferenced nodes starts at 2. 

The writing routine is a simple traversal of the graph embedded in the scratch slot tapestry. If 
configured, the fallback fetch condition is respected when navigating slot mappings. Entering 
at the root, the algorithm traverses the structure in full, following forwarding chains to their 
terminus when they are encountered, arriving at a representative slot for each node. The type 
stored in this scratch slot is the final type to store as an out-tuple.  

Note that the terminal slot in a forwarding chain determines only the out-tuple that is recorded. 
Although the representative slot which we arrived at—like all scratch slots—appears in one or 
more feature-arity maps of its corresponding TFS, these are irrelevant to what we are now re-
cording.65 The correct feature identifier to emit as the in-tuple for the current node is the fea-
ture value, appropriate to the node type, that we originally queried from the governing slot, 
prior to following any forwarding. 

The representative slot stores information about how to proceed into its substructure, if any. 
This is the slot mapping, which consists of a reference to one of the argument TFSes (implicit-
ly, via its global slot index), and an out-mark to be used with its hash addressing scheme. This 
mark is paired, in turn, with each feature appropriate to the result node type to obtain a set of 
storage indexes relative the indicated TFS. These TFS-local indexes are trivially mapped into 
the range of scratch slots assigned to the TFS, thus designating a set of unifier scratch slots. If 
forwarded, these are followed as the process is repeated. 

                                                   
64 By using a positive value, the system is asserting that root nodes are never coreferenced, which must be the case since 
cycles are not permitted in the adopted formalism. As with the out-tuples resident in 𝔸, the root out-tuple is described by 
a C# value type, so it would not be precisely correct to say that the root out-tuple is itself “allocated.” Its physical storage 
exists in situ (along with a handle (reference) to the C# array which implements 𝔸) within 𝐴, the object that represents 
the array TFS storage instance as a whole. 
65 Recall that an in-tuple records the ‘arc,’ or the identity of the last feature in the path to the node. 
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During the first pass, in addition to determining the total node count, the node counting mech-
anism records, for each scratch slot, how many feature-value tuples refer to the slot.66 If there 
is only one, the result node is not coreferenced. In this case, the next positive mark value is 
issued, unless the node type has no appropriate features, in which case mark zero is used. If 
there is more than one governing slot which references the node, the result node is corefer-
enced, and the next mark in the negative sequence is issued. For coreferenced nodes, the mark 
value is also placed in the scratch slot’s 𝑚𝑚𝑠𝑟𝑐 field, so that later references to the node will use 
the same mark value, which establishes coreferencing in the array storage relation. When the 
value for each of the four fields in a 4-tuple have been gathered, the tuple is written to the cur-
rent position in 𝔸, and the writing position is advanced. 

4.5 Example 
This section presents step-by-step diagrams which depict the operation of the unifier at each 
stage of a unification operation. The section begins with some explanatory remarks to assist 
with the interpretation of the diagrams. 

Recently, the method by which the unifier assigns scratch slots to the coreferenced nodes of 
the argument TFSes has been altered to capitalize on the forwarding mechanism used by the 
unification procedure itself. In short, the distinct range of scratch slots dedicated to the corefer-
ences of each argument structure (as described in Section 4.4.2) is replaced with a simple array 
of pointers to unifier slots. The slot indicated for a given coreference becomes its ‘designated’ 
slot, a condition trivially claimed by the first node the unifier encounters from each equiva-
lence class. Henceforth, each node from the corresponding set of joined argument nodes is 
forwarded—using unifier’s own forwarding mechanism—to the designated slot (or according 
to its forwarding chain). This enhancement will be described in more detail in future work, but 
is mentioned briefly here because the diagrams shown in this section reflect the modified de-
sign. One motivation for this is that illustrative diagrams are more concise and compact when 
the number of scratch slots is fewer.  

In agree, a single “top-level” TFS unification operation67 can incorporate any number of input 
arguments, called unification participants. At least one of the participants must be designated 
as denoting the outermost root of the putative result TFS, and each of the remaining partici-
pants is unified into a particular substructure position (or the root) relative to the root of that 
argument. Additional participants can be introduced into the operation at any time, and this 

                                                   
66 As was the case for n-way unification (and noted in footnote 52 on page 61), the criteria here is not the number of ref-
erencing paths, but rather just the number immediate parent ‘arcs.’ In terms of unifier scratch slots, this notion of imme-
diate parents is subtle. We wish to mark as coreferenced any slot which is reached as a forwarding target more than once, 
but this determination is unrelated to whether the target slot is itself reachable, that is—via some slot mapping within its 
own TFS. In fact, it is very common for slots representing arcs that no longer contribute to the result structure to never-
theless remain as active governing slots which maintain a type and mark value for a result node.  
67 By “unification operation,” I refer to (re-)setting the number of input participants to zero, and (re-)initializing the unifi-
er’s scratch slots. In the most recent implementation and as described in Wroblewski (1987), the latter amounts to incre-
menting a single integer value which serves as the unifier’s generation counter. 
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allows well-formedness TFSes to be incorporated, as needed, without the expense of starting 
an entirely new operation. For mother-daughter unifications, this also allows an entire set of 
rule daughters to be unified as a single operation, an optimization that showed significant bene-
fit when evaluated with n-way unification (see Figure 13 on page 72). 

The example that will be used to illustrate the operation of the array storage unifier is the 
mother-daughter unification shown in Figure 16. The operation involves two TFS partici-
pants—𝑀, the mother, or outer argument, and 𝐷, the daughter, or inner argument. As noted 
above, additional participants can be introduced, but if they do not coincide with the outermost 
structure, they all must be positioned relative to (i.e., within) the same outer participant, which 
must be specially designated as such. 

Overall, there are two basic steps. First, 𝐷 is unified into a particular sub-structural position 
within 𝑀. This step is the only part of the overall unification that is subject to failure, so it is 
evaluated directly first, making no reference to any parts of the mother that fall outside the 
reach of the daughter. No traversal is required to locate the daughter entry points of the outer 
structure, because each mother-daughter (i.e. “rule”) TFS caches all of its own daughter marks 
(and slot indexes, for the unifier’s benefit). If the first step is successful, the second step builds 
a result structure by incorporating the unification result—as manifested across the unifier’s 
scratch slots—into a copy of the untouched portions of the outer structure. 

 
Figure 16. The TFS unification used as an example in this section. 

The sequence of examples each correlate tabular values from the unifier scratch slots with the 
same information presented in the graphical form introduced in Section 2.3.4, a new represen-
tation suited to the modeling of the invariant arity mappings that are exposed by array storage 
TFSes. The use of these non-directed graphs emphasizes an important feature of the array stor-
age unifier, namely, that it expresses the result structure amongst its scratch slots without hav-
ing to alter the given slot mapping substrate. Figure 17 shows the state of the unifier’s scratch 
slots after the two participant TFSes have been introduced but prior to the start of unification 
proper. The main array of scratch slots is labeled ps_base. Here, the entire set of storage rows 
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for each participant TFS, plus one slot for each root node, have been mapped into a set of con-
tiguous scratch slots. This mapping is instantaneously accomplished by simply asserting 1-to-1 
correspondence between the (storage) ordering of every tuple in each participating 𝔸 and some 
range of unifier slots. In other words, each TFS is given a unique, abutting range of slots. 

 

ps_base, step 0 

slot TFS 𝒎𝒎𝑭𝑭 𝒇 gen 𝒊𝒙𝒇𝒘𝒅 𝒕 𝒎𝒎𝑻𝑻 
0 (global slot 0) unused 
1 M (root slot M) old 

   2 M 1 CAT old 
   3 M 1 NUMGEND old 
   4 M 1 ARGS old 
   5 M 6 FIRST 

 
0 syn 3 

6 M 6 REST old 
   7 M 3 CAT old 
   8 M 3 NUMGEND old 
   9 M 5 FIRST old 
   10 M 5 REST old 
   11 M 4 CAT old 
   12 M 4 NUMGEND old 
   13 M -1 NUM old 
   14 M -1 GEND old 
   15 D (root slot D) 

 
0 pl-word 1 

16 D 1 CAT old 
   17 D 1 STEM old 
   18 D 1 NUMGEND old 
   19 D 2 NUM old 
   20 D 2 GEND old 
   pp_corefs 

TFS coref slot 
M -1 (null) 

 

Figure 17.  The state of the unifier slots after preparing for the mother-daughter unification shown in Figure 16 and 
prior to initiating the unification traversal. Two scratch slots have been initialized: the slot corresponding to the root 
node of the daughter, and the slot for the daughter’s position within the mother. These are the slots which will be 
joined first, in a call to the recursive procedure that unifies two TFSes, node by node. The remaining scratch slots are 
untouched, as indicated by an ‘old’ generation value. See the text for further discussion. 

The first four columns in ps_base have no manifestation in the scratch slots, and their con-
tents—as mediated by the participant mapping—are provided only to facilitate this presenta-
tion. One of the remaining four columns, ‘gen,’ implements a generation counter (Wroblewski 
1987) that allows an entire set of unifier slots to be efficiently re-initialized (for reuse in a sub-
sequent operation). This mechanism substitutes for the stack-based slot allocation method, 
which was also described Section 4.4.3 (as noted, this recent aspect of the agree implementa-
tion is not incorporated in the system evaluated in Chapter 5). For any slot that belongs to an 
‘old’ generation, the table will show no further information, because the slot has not been 
touched by the current unification operation, so the values in those fields are unpredictable. 

The three remaining columns are described by (4.9) in Section 4.4.3. To review, 𝑖𝑥𝑓�𝑑 con-
tains the slot’s forwarding value, an integer which indicates the index of any other unifier slot, 
allowing slots to be globally forwarded across participant boundaries. A value of zero indicates  
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that the slot is not forwarded.68 For performance optimization, the 𝑡𝑡 and 𝑚𝑚𝑇𝑇 fields of the slot 
are cached by copying the out-tuple from the source TFS into the unifier slot. This initializa-
tion happens on demand, the first time the slot is accessed by the unifier during the operation 
(as determined by the slot’s generation value, which is updated accordingly). The type value 
stored in the slot represents the current type for the slot, which the unifier can alter if desired. 
However, the utility doing so is limited, because the unifier cannot alter the set of slots that is 
selected by querying with the value 𝑚𝑚𝑇𝑇. Queries using 𝑚𝑚𝑇𝑇 must be submitted to the TFS that 
owns the slot—since 𝑚𝑚𝑇𝑇 has no meaning otherwise—and that TFS will never provide a valid 
                                                   
68 The convention of using 0 to terminate forwarding chains is accommodated by the fact that unifier slot zero receives 
special treatment; it is always excluded from the range of slots assigned to participant TFSes. This can be seen in the 
illustration, which includes scratch slot zero. 

 
step 1 

 
step 2 

 
step 3 

 
step 4 

 
step 5 

Figure 18. Continuing from the state 
shown in Figure 17, the unifier takes 
five steps to join the mother and daugh-
ter structures, completing the first pass. 
Unifier forwarding, a directed relation-
ship, is indicated by red arrows. Green 
coloring indicates nodes that have been 
visited. 

When slot 8 is touched in step 2, its 
index is associated with the coreferenc-
ing slot pointer “-1” in pp_corefs. 
Compare Figure 17 to Figure 19 

After step 5, the final step of the first 
pass, all of the daughter nodes have 
been visited, but outer structure from 
the mother remains untouched. This 
state is examined in more detail in Fig-
ure 19. 
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storage index—and by extension, extant unifier slot—for a feature that is not appropriate to the 
original type value. Because of this, the current implementation only changes a slot’s type in 
one particular case: when type unification between two slots results in a third type which still 
has no appropriate features.69 

 

ps_base, step 5 

slot TFS 𝒎𝒎𝑭𝑭 𝒇 gen 𝒊𝒙𝒇𝒘𝒅 𝒕 𝒎𝒎𝑻𝑻 
0 (global slot 0) unused 
1 M (root slot M) old 

   2 M 1 CAT old 
   3 M 1 NUMGEND old 
   4 M 1 ARGS old 
   5 M 6 FIRST 

 
15 

  6 M 6 REST old 
   7 M 3 CAT 

 
16 

  8 M 3 NUMGEND 
 

18 
  9 M 5 FIRST old 

   10 M 5 REST old 
   11 M 4 CAT old 
   12 M 4 NUMGEND old 
   13 M -1 NUM 

 
19 

  14 M -1 GEND 
 

20 
  15 D (root slot D) 

 
0 pl-word 1 

16 D 1 CAT 
 

0 det 0 
17 D 1 STEM 

 
0 “these” 0 

18 D 1 NUMGEND 
 

0 num-gend 2 
19 D 2 NUM 

 
0 pl 0 

20 D 2 GEND 
 

0 gender 0 

pp_corefs 

TFS coref slot 
M -1 8 

 

Figure 19.  The unifier slots from running example are depicted after the first pass. 

Below the set of slots, the small set of coreference-claiming pointers (described in the intro-
duction to this section) is illustrated. Like ps_base, this is a contiguous list of pointers (to 
scratch slots) that is prepared according to the number of coreferences each participant con-
tains, a figure which is known in advance because it is permanently recorded in each array TFS 
instance. Further akin to the ps_base depiction, the first two columns in pp_corefs are for ref-
erence purposes only, as this data structure is just an array of pointers whose interpretations 
can be sufficiently deduced by their list positions (combined with contextual information from 
unifier control structures). For this example, 𝑀 has one coreference and 𝐷 has none, so only a 
single uninitialized pointer is present. 

For the example case, the unifier joins the two structures in five steps, which are shown in Fig-
ure 18. This is essentially the UNION-FIND method described by Aho et al. (1976). 

                                                   
69 “Still” because the condition entails that the two parent types have no appropriate features. Note also that, in the case 
described, if the result type does have appropriate features, then a well-formedness TFS must be introduced. 
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The next illustration, Figure 19, shows the state of the slots after the daughter traversal has 
completed. At this point the success of the overall operation is guaranteed. Several slots are no 
longer ‘old,’ but portions of the mother TFS remain untouched, and will be visited for the first 
time—and copied—while writing the result structure. 

As noted at the end of Section 4.4.2, because the array storage model does not physically con-
flate logically coreferenced nodes, the unifier must take steps to re-establish their referential 
equivalence for each TFS participant. This is achieved by constructing a representation of the 
intra-participant coreferencing according to the unifier’s inter-participant forwarding mecha-
nism. Mirroring coreferences from each structure into the unifier is inexpensive and is incre-
mentally completed on demand as nodes are first visited. For example, TFS 𝑀 has three arcs 
leading to node 𝑚𝑚𝑇𝑇 = −1 (they correspond to unifier slots 3, 8, and 12). One of these was vis-
ited during the daughter pass. This is slot 8, as we can see by the fact that the unifier has 
claimed, on behalf of slot 8, the slot pointer (in pp_corefs) dedicated to coreference 𝑚𝑚𝑇𝑇 = −1. 
This ensures that when the writing pass encounters the remaining two slots which have 
𝑚𝑚𝑇𝑇 = −1 (while completing outer structure 𝑀), it will assign the same mark value to all three. 

 

ps_base, step 6 

slot TFS 𝒎𝒎𝑭𝑭 𝒇 gen 𝒊𝒙𝒇𝒘𝒅 𝒕 𝒎𝒎𝑻𝑻 
0 (global slot 0) unused 
1 M (root slot M) 

  
phrase 1 

2 M 1 CAT 
  

np 0 
3 M 1 NUMGEND 

    4 M 1 ARGS 
  

cons 6 
5 M 6 FIRST 

 
15 

  6 M 6 REST 
  

cons 5 
7 M 3 CAT 

 
16 

  8 M 3 NUMGEND 
 

18 
  9 M 5 FIRST 

  
syn 4 

10 M 5 REST 
  

null 0 
11 M 4 CAT 

  
n 0 

12 M 4 NUMGEND 
    13 M -1 NUM 
 

19 
  14 M -1 GEND 

 
20 

  15 D (root slot D) 
 

0 pl-word 1 
16 D 1 CAT 

 
0 det 0 

17 D 1 STEM 
 

0 “these” 0 
18 D 1 NUMGEND 

 
0 num-gend 2 

19 D 2 NUM 
 

0 pl 0 
20 D 2 GEND 

 
0 gender 0 

pp_corefs 

TFS coref slot 
M -1 8 

 

Figure 20.  The unifier slots from the example case at the end of the operation, after the writing pass. Notice that the ref-
erential equality between coreferenced nodes in 𝑴, a property which is absent from the array TFS storage representation, 
has been restored via the unifier slot forwarding mechanism, as is necessary to ensure the correct conflation of corefer-
encing. 

To illustrate this particular case, consider one of the remaining joined slots, for example, slot 3. 
The writing pass will encounter this slot for the first time as it copies the untouched mother 
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structure. Because the slot is ‘old,’ slot initialization will be triggered, meaning that the out-
tuple from the source TFS will be retrieved. Next, noticing that the value of 𝑚𝑚𝑇𝑇 is negative, the 
unifier checks pp_corefs and observes that slot 8 has already been designated for the class. If 
there were no designation yet, the designation would be claimed. 

 

 
in-tuple out-tuple 

𝑚𝑚𝐹𝐹 𝑓𝑓 𝑡𝑡 𝑚𝑚𝑇𝑇 

 ROOT→ phrase 1 
1 CAT np 0 
1 NUMGEND num-gend -1 
1 ARGS cons 6 
6 FIRST pl-word 3 
6 REST cons 5 
5 FIRST syn 4 
5 REST null 0 
4 CAT n 0 
4 NUMGEND num-gend -1 
3 CAT det 0 
3 STEM “these” 0 
3 NUMGEND num-gend -1 
-1 NUM pl 0 
-1 GEND gender 0 

 

   
Figure 21. The result structure produced by the unification example, after being written as a new array storage TFS. 

At this point, the forwarding value for slot 3 could be set to 8, and this is in fact what happens 
if slot 8 is not itself forwarded.70 Recall that a forwarding slot value of 0 indicates the end of a 
forwarding chain. However, in this case, slot 8 is forwarded—across participant boundaries—
                                                   
70 In this example, such forwarding is not strictly necessary since each slot is visited only once—and for the last time—
during the writing pass, entailing that the slot’s forwarding value will never be accessed, and the correct coreferencing in 
the outer part of the result could, in principle, be determined from information in 𝑀. It is during the first pass that re-
establishing referential equivalence amongst coreferenced nodes is critical, and generally speaking, the joining pass has 
no way of predicting the operant condition, namely, how many times a coreferenced node in 𝑀 will appear within its 
daughter region. 
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to slot 18. This is because the unifier chose slot 18 to be the representative slot as it was join-
ing coincident nodes between 𝑀 and 𝐷. Since the unifier must walk this chain to its end any-
way, a “free” optimization is possible, namely short-circuiting the chain for slot 3, the newly-
visited slot, so that it points directly to slot 18. Thus, in practice the unifier will set 18 as the 
forwarding value for slot 3, but for clarity the example figures do not assume the optimization.  

Prior to beginning the writing pass, the unifier initializes the root slot for the outer TFS, 𝑀. If 
one or more of the other participants were unified into the root node of the designated outer 
TFS, then this step is unnecessary, since the slot—which signifies the root of the result TFS—
would have been initialized during the first pass. Once this slot is initialized, a traversal of the 
structure embedded in the scratch slots is initiated. This is the result TFS, which is emitted as a 
set of contiguous 4-tuples as the traversal progresses. The result is a new storage relation, 𝔸. 

Figure 20 shows the state of the unifier slots after the writing pass. There are no remaining 
slots belonging to an old generation, which indicates that every slot has now been visited. Type 
and out-mark values for forwarded slots may have been stored, but for clarity they are not dis-
played here. In practice, type values for slots which are immediately forwarded upon first visit 
need not be stored. After the writing pass, a new array storage TFS has been produced. It is 
shown in in Figure 21. 

4.6 Summary 
This concludes the discussion of Chapter 4, which concerned TFS unification and the array 
storage unifier. The chapter began with a brief description of TFS unification, and by describ-
ing how adopting a well-formedness requirement for typed feature structures implies that any 
component which produces TFSes—most significantly, a unifier—assumes a responsibility for 
maintaining the condition. 

Section 4.2 presented a literature review of prior work in linguistic unification algorithms. n-
way unification, a new method investigated as part of this research, was also examined. Alt-
hough auxiliary to the main thrust of this thesis, the novel method nevertheless serves as a ve-
hicle for raising relevant points of discussion, both theoretical and empirical. 

The core of the chapter was the presentation of the array storage unification algorithm. Taken 
together, this method and the array TFS storage method (presented in Section 2.3 and Chapter 
3), comprise the chief contribution of this thesis. The chapter concluded with a diagrammatic 
walk-through of the operation of the array TFS storage unifier for a simple linguistic example. 
In the next section, I present an evaluation of the new methods, as implemented in agree, a 
new grammar engineering platform which is wholly based on array TFS storage and its com-
panion unifier. 
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5 Evaluation 
Array TFS storage and the array storage unifier are implemented in agree, a new grammar en-
gineering environment which supports the established grammatical formalism and standard 
practices of the DELPH-IN consortium. agree joins the LKB (Copestake 2002b), PET (Call-
meier 2002), and Ace (Packard, see footnote 48) as a fourth platform for development and de-
ployment of computational grammars based on the DELPH-IN joint reference formalism 
(Copestake 2002a), itself a computational variant of Head-Driven Phrase Structure Grammar 
(HPSG, Pollard and Sag 1994). The typed feature structures comprising these grammars are 
authored using TDL (Krieger and Schäfer 1994), a declarative text-based notation for describ-
ing TFSes and the type hierarchy they extend. 

Daughter ARG deletion Removes daughter substructure after unifying rule daughters 
Key driven Orients active edges according to a grammar condition  
Span-only rules Limits application of tagged rules to spanning structures only 
Quick-check Probes failure-prone paths in the paired argument TFSes prior to 

unification 
Chart dependency filter Predicates the promotion of each morphology result to the parse 

phase upon the satisfaction of one or more directed conditions 
evaluated between the candidate and some other satisfying analysis 
with a disjoint span. 

Ambiguity packing  Controls chart size by allowing a feature structure to be represented 
by a subsuming surrogate during parsing 

Rule-filter Skips unifications precluded by pre-computed mother-daughter 
grammar rule compatibilities 

Table 5. Common DELPH-IN parser optimizations. 

The LKB, PET, and Ace implement Tomabechi’s quasi-destructive unification with the struc-
ture sharing adaptation described in Malouf et al. (2000), whereas agree implements the unifier 
described in this thesis, and performs structure sharing only in the simple cases described at the 
end of Section 2.2.2. All four systems offer bottom-up chart parsers and implement a bevy of 
parsing optimizations and research innovations published by DELPH-IN researchers and oth-
ers over the past two decades. A selection of these is listed in Table 5; further details are pro-
vided in Kiefer et al. (1999) and Oepen et al. (2002). 

Because these optimizations are so effective at reducing a parse to just its critical sequence of 
unifications, it is expected that unifier performance is the most constraining factor in the per-
formance of these parsers. Even so, implemented computational systems involve thousands of 
free variables which are difficult to control, so end to end evaluation must not be taken as a 
wholly conclusive measure of the performance of the underlying unification algorithm. For a 
self-evident demonstration of this, we can see that the LKB and PET, which use the same un-
derlying unification algorithm, present vastly different performance on an identical task. Table 
6 shows the time required to parse and exhaustively unpack 287 sentences71 from the ‘Hike’ 
                                                   
71 The full ‘hike’ corpus contains 330 sentences. For all three systems, 43 sentences which either contain numeric digits 
(not currently supported by agree), or which the LKB could not exhaustively unpack within 2 hours (per sentence) were 
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corpus, using the English Resource Grammar (Flickinger 2000). To calculate a scaling figure 
(which expresses the exponent according to which parse time increases with respect to sen-
tence length), each sentence is paired with its parse time and the best least-squares exponential 
function 

 𝑦 = 𝑎𝑒𝑏𝑥  (5.1) 

 is fit. 𝑅2 is a figure which reflects the accuracy of this type of fit. The derivative of (5.1), 

 𝑑(ln 𝑎 + 𝑏𝑥)
𝑑𝑥  

(5.2) 

(equivalently the slope of a log-linear regression line), is a measure of the degree with which 
parse time compounds as sentence length (in number of words) increases. Thus linearized, this 
scaling ‘exponent’ can be normalized (in this case to agree=1.0) for comparison. 

 𝑡𝑡𝑚𝑖𝑛 
(sec.) 

𝑡𝑡𝑚𝑎𝑥 
(sec.) 

𝑡𝑡𝑡𝑜𝑡𝑎� 
(m:ss) 

𝑦 = 𝑎𝑒𝑏𝑥 
𝑅2 scaling (𝑏) 

agree=1.00 𝑎 𝑏 

LKB .080 1070.0 67:14 .0133 .4179 .665 2.08 
PET .007 8.4 1:47 .0091 .2378 .649 1.18 
agree .008 7.7 3:04 .0395 .2005 .687 1.00 

Table 6. Performance scaling versus sentence length. Bold-faced values show best result. Details on methodology are 
given in Section 5.4. agree concurrency and pipelining is disabled. This summarizes the data of Figure 22, except as not-
ed in Footnote 71. 

The two systems which implementations of Tomabechi’s unification method exhibit perfor-
mance scaling that differs by a factor of 1.75. On the other hand, PET and agree, which em-
ploy quite different storage and unification technologies perform similarly.  

Not only do these results confirm the hazards of using system-level parser testing as a proxy 
for the performance of the unification algorithm, they also disrupt the notion that the managed- 
vs. native-code distinction necessarily delineates classes of system performance. Although 
agree and the LKB are both managed-code systems, in this test their respective results diverge. 
And as noted above, agree and PET, managed and native implementations respectively, show 
similar performance.  

Considering these factors, Table 6 constitutes a sufficient validation of the array storage meth-
od and its complimentary unifier. Later in this chapter, Section 5.5 documents a few additional 
experiments of a more exploratory nature. Before this, however, the next sections provide a 
technical overview of each evaluated system and document the test methodologies which were 
observed. 

                                                                                                                                                          
omitted, and these are the results shown in Figure 22. The results in Table 6 exclude—for the LKB only—11 additional 
sentences which took more than 10 minutes for the LKB to complete. This accounts for the 94 minute difference versus 
Figure 22, but because the time scale is exponential the conclusions remain the same. Additional details on evaluation 
methodology are provided in Section 5.4. 
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5.2 agree 
Development of agree progressed over several years in conjunction with the research objec-
tives of this thesis. The system targets the ECMA-335 Common Language Infrastructure 
(CLI),72 which is implemented for Windows (“.NET”) and other platforms (“Mono”). In the 
interim, agree has evolved into a competent DELPH-IN-compliant grammar engineering envi-
ronment with inherent support for concurrency. In addition to providing a core implementation 
of the DELPH-IN joint reference formalism, including the set of optimizations listed in Table 
5, the system has evolving support for tactical realization of surface strings (sentences) from 
semantic inputs specified in the format of Minimal Recursion Semantics (MRS, Copestake et 
al. 2005).  

Generation is a recent addition to agree. The core functionality of the agree generator is in 
place (including key optimizations such as index accessibility filtering), and further optimiza-
tions under development.73 To support generation, support for trigger rules, surface read-back, 
skolemization, and MRS extraction and rewriting were added to agree. The agree parse chart 
exposes an abstracted edge proximity condition which maximizes the amount of common 
functionality between parsing and generation. In particular, a novel lock-free mechanism 
which synchronizes the manipulation of chart edges is shared, allowing both modes to deploy 
proactive and retroactive ambiguity packing (Oepen and Carroll 2000b)—in a new concurrent 
adaptation. This work will be described in a separate publication.  

The core functions in agree are implemented in a library module such that they are only acces-
sible through programmatic interfaces. Accordingly, several client applications which control 
and provide access to the system have been developed. The most basic is a console process 
which loads a grammar, and parses (or generates) one or more input items. Input adapter mod-
ules allow inputs to be supplied from different types of sources, such as from the console, from 
an [incr tsdb()] profile (Oepen and Carroll 2000a) or from a simple text file. This console 
program is the control harness that was used to evaluate agree in this thesis. 

The core library and console application are compatible with, and have been tested on, both of 
the target environments, .NET and Mono. In addition to the console front-end, agree also 
sports a few different graphical user interfaces74 which variously support visualization and in-
teractive manipulation of grammar entities, and specialized grammar diagnostics. Future plans 
include a program which enables a rich editing workflow for grammar engineers. Discussing 
these programs is beyond the scope of this thesis. 

                                                   
72 European Computer Manufacturer’s Assocation, see footnote 27 on page 4. 
73 Certain parts of the generator have been developed with the assistance of Spencer Rarrick. 
74 These make use of WPF, a vast, next-generation system of .NET system libraries that, sadly, will not be available on 
the open-source Mono platform. The dependency extends to the agree library that provides graphical TFS, MRS, parse 
tree, and parse chart rendering. Aware of this penalty, the route was chosen because the rapid GUI development that 
WPF enables was too compelling. 
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Facilitated by agree’s ability to read configuration settings in either LKB or PET format, sev-
eral grammars are regularly tested. These include the English Resource Grammar (Flickinger 
2000), the JACY Japanese grammar (Siegel and Bender, 2002), a grammar of Mandarin Chi-
nese (Zhang 2011), and my own grammar of the Thai language.75 The latter two grammars are 
based on the Grammar Matrix (Bender et al., 2002), which includes a customization system 
(Bender et al., 2010) that facilitates the rapid prototyping of new grammars for typologically 
diverse languages.  

The DELPH-IN consortium is committed to open-source development. The source code for 
agree is released under the MIT license and will be available for community comment and col-
laborative development. With the exception of the graphical client programs mentioned above 
(because they require WPF) agree can be built and tested with Mono, an open-source envi-
ronment which supports all modern hardware platforms, including Windows, Mac, and Linux. 

5.3 Existing systems 
The LKB, evolved from earlier systems which date to the early 1990s, supports both parsing 
and generation, and—with its graphical user interface—facilitates interactive grammar engi-
neering. Ace is a speedy native-execution parser developed by Woodley Packard which im-
plements support for advanced features such as generation and selective unpacking; formally 
released in 2011, this system is not included in this evaluation. PET, originally developed as a 
platform for experimentation in parsing and unification technologies, is now the first-choice 
for batch-oriented parsing in production and high-volume research environments; it contains 
state-of-the-art statistical parse selection and n-best selective unpacking. PET enjoys contin-
ued, active development; in its distributed release—or as a source-code branch—it is widely 
used for grammar development, parser research, and grammar instrumentation. 

Because the PET system prepares a compiled image of a grammar as a first step, it can also 
facilitate experimental parser development. An example is the work mentioned in Section 
4.2.10; by designing his thread-safe parser CaLi so that it loaded PET grammar images, van 
Lohuizen (2001, 96) did not have to implement the infrastructure for parsing TDL files, clos-
ing the type lattice, and other tasks associated with loading DELPH-IN grammars.  

Existing DELPH-IN parsers are single-threaded.76 For several reasons, there has historically 
been little reason to develop concurrent systems within the consortium’s research program. 
First, questions of grammar engineering are equivalently answered between single-and multi-
threaded parsers. Second, multi-core systems—and decline in the progression of CPU core fre-
quency increases—have only taken hold in recent years. Third, parsing and generation are 

                                                   
75 The Thai grammar was initially developed as part of coursework supervised by Emily Bender. The grammar incorpo-
rates some linguistic analyses published by Nuttanart Facundes, who also offered language insights for the project during 
my lectureship at King Mongkut’s University in Thonburi, Thailand. 
76 The CaLi system developed by Marcel van Lohuizen appears to be no longer maintained, so it is not considered a cur-
rent DELPH-IN system. 



105 
 

thought to be “embarrassingly parallel” tasks; if the overall task requires processing more than 
one sentence, multiple CPUs might be trivially harnessed by spooling sentences to several sin-
gle-threaded processes.  

Subtended by the third consideration, however, are two assumptions that may not hold: that the 
processing is batch-oriented, and that provisioning multiple parser instances is functionally 
equivalent to finer-grained concurrency. Clearly the first assumption is not applicable to some 
applications. The performance objective in real-time applications, for example, is simply to 
minimize, by any means possible, the parse time for a single sentence. Text stream sources 
which establish a real-time requirement include voice recognition systems and web interac-
tions. As for the second assumption, two counterexamples are summarized in Section 5.6. 

5.4 Methodology 
For consistency, the test configuration used swappable hard drives to alternate between Linux 
(LKB/PET) and Windows (agree) on the same machine; it is an 8-core (2 × X5460) with 
32GB of RAM. The Mono build of agree was not performance tested.  

In accordance with the research concerns of this thesis, a stress configuration is used for all 
testing in order to maximally expose the efficiency of each parser’s unifier and its underlying 
TFS storage model. Specifically, the parsers are always configured for exhaustive unpacking 
of every derivation in the parse forest, for every sentence. In the case of PET, the [incr 
tsdb()] (Oepen and Carroll 2000a) profiling system was configured such that PET’s ‘cheap’ 
parser operated with the following options: 

 packing=7 –default-les -cm english.grm (5.3) 

Because the –nsolutions option and packing bit 0x8 are not specified, PET will unpack the en-
tire parse forest. Unfortunately, the LKB is not able to complete exhaustive unpacking for sev-
eral of the sentences, owing to resource exhaustion. Sentences for which the LKB consumes all 
32GB of available physical memory and also has not completed the individual sentence after 
two hours are abandoned and notated as having not finished. Finally, for all tests, and for all 
systems, timings do not include grammar start-up. 

5.4.2 Evaluation grammar and corpus 
The evaluation grammar is the English Resource Grammar (ERG, Flickinger 2000) revision 
10342. This is a publically available broad-coverage precision grammar, the most comprehen-
sive of its kind. The grammar is distributed with the LinGO Redwoods Treebanks (Oepen et al. 
2002), a set of curated corpora with reference parses. Tests were conducted with the ‘hike’ set, 
a collection of 330 sentences gleaned from Norwegian tourism brochures which is often used 
in DELPH-IN parser evaluation. The average sentence length is 11.67 words, and every sen-
tence is fully covered in the lexicon. The task entails performing around 20 million top-level 
unifications. 
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As noted in Section 5.4, the LKB is not able to complete exhaustive unpacking of a number of 
sentences in the ‘hike’ corpus. In an attempt to address this problem early in this thesis re-
search, these complex sentences were excluded from the test corpus, yielding a subset which 
contains 287 of the 330 ‘hike’ sentences (the 43 excluded sentences also includes 12 sentences 
which contain numeric digits, since they are not currently accepted by agree). Because a large 
number of evaluation trials was archived on this basis, and in order to support consistent com-
parison with these data, this is the corpus that is used in the batch processing evaluation, pre-
sented in Section 5.5.1. Note however, that this advisory applies neither to the real-time re-
quirements evaluation (Section 5.5.2) nor the throughput analysis (Section 5.5.3), which both 
use the 318 ‘hike’ sentences which do not contain numerals. 

5.4.3 Correctness 
Correctness of the agree results was established over the ‘hike’ corpus. On the assumption that 
LKB and PET were cross-validated in previous work, derivation correctness was only validat-
ed in full between the agree and PET results. Discounting well-understood differences77 which 
account for around 0.6% of the 277,946 derivations, derivation correctness was exact. 

This validation was performed by rendering text-based (path list) feature structures using the 
PET feature ordering, filtering out token-mapping paths (agree currently does not inject stand-
off positions into the feature structure), and comparing with a text ‘diff’ utility. The entire pro-
cess was automated. In contrast to the performance tests, agree derivation correctness was also 
established for the Mono/Linux. In this test, full results from agree were compared between its 
Windows and Linux builds, and they were found to be identical. 

5.5 Results and analysis 
This section presents results from a variety of experiments which aim to characterize the per-
formance of agree’s managed-code parser against two existing parsers, one managed and one 
native, as a baseline. Parser comparison is notoriously difficult (Dridan 2010); results from this 
section should be calibrated accordingly. Dridan suggests organizing evaluation around high-
level application scenarios. Two basic scenarios are contrasted. In the first, batch processing, 
the objective is to parse, as quickly as possible, a set of sentences which are all available at the 
outset. Within this scenario, agree is evaluated with concurrency disabled. Naïve concurrency, 
as it applies to existing parsers, is primarily discussed in Section 5.5.3, but is not evaluated in 
the two batch-oriented test configurations of Section 5.5.1, for reasons that will be noted in the 
text. 

The second test scenario concerns applications which express a real-time requirement (Section 
5.5.2). In this case the objective is to parse a single sentence as quickly—and by whatever 
means—possible. Modes which allow existing parsers to compete in this category are briefly 
                                                   
77 A single difference in tokenization can result in a large difference in the number of derivations. Twelve differences in 
tokenization accounted for 1,668 derivations not generated by one system or the other. Each difference was carefully 
investigated so that derivations that were not affected by the difference were correctly cross-validated.  
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surveyed. Finally, in Section 5.5.3, experiments exploring agree’s throughput and scaling are 
discussed, with analysis. 

5.5.1 Batch parsing 
This section examines batch parsing performance, with experimental contrasts between the 
LKB, PET and agree parsers. Two setups are tested. First, since any parser can be configured 
for sentence pipelining—that is, accepting sentences from a central spooler—agree is tested 
with all concurrency disabled. To understand the rationale in this test design requires a sum-
mary understanding of agree’s concurrency modes. A brief overview is provided in the follow-
ing paragraphs.  

agree supports two distinct concurrency mechanisms. First, a sentence spooler is a built-in ca-
pability it explicitly exposes. Zero or more submitter instances can be created to spool sentenc-
es to a corresponding parser instance. Each operates within the same process and on the same 
grammar, without requiring the expense of an additional OS process or the memory cost of 
redundantly loading the grammar. 

The second concurrency mechanism in agree is a configuration option, exposed by the parser, 
which places a limit on the number of tasks which it may submit to the Common Language 
Runtime (CLR). This mechanism is independent of the number of submitters provisioned. To 
understand the effect of this limit, a brief review of the parser’s scheduling is discussed next. 

Fundamentally, the agree parser issues fire-and-forget tasks to the CLR’s lightweight task dis-
patcher, Task<T>,78 on a linguistic basis—that is, according to conditions specific to the gram-
mar and the sentence being parsed. Each parse task conceived by agree may invoke up to sev-
eral dozen unifications before exiting. For example, one task is dedicated to evaluating a new 
passive chart edge against all pre-existing active edges, so the number of unifications depends 
on the sentence length and complexity. Another task generates new active edges for the new 
passive chart edge, so the amount of work performed by this task depends on the number of 
grammar rules. 

If dispatching a new task would exceed the task limit, then the work is immediately executed 
by the executing thread (the caller who attempted to queue the task). Otherwise the task is 
queued to the operating system and agree has no further involvement in the scheduling or pri-
oritizing of the task, except to decrement the total task count when the task eventually com-
pletes. Thus, the ‘parser task limit’ mechanism places an upper limit on the number of tasks 
that the CLR’s Task<T> subsystem becomes aware of. Because Task<T> is well designed, this 
                                                   
78 Task<T> is responsible for mapping application-submitted tasks to a limited set of threads from the system thread pool, 
and for dynamically monitoring the number of threads and other parameters so as to maximize performance. It is a gen-
eral-purpose concurrency service which has no knowledge of agree’s linguistic parsing application. The Task<T> facility 
is highly regarded for its sophisticated self-tuning capabilities and for incorporating results from contemporary concur-
rency research, including runtime tuning via empirical hill-climbing and work-stealing. 
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limitation rarely improves performance, and it is largely used for performance testing, as in the 
experiments presented here. 

Beyond the independent con-
figurations of the sentence 
submitter and the parser task 
limit, there is no single-
threaded mode in agree. In-
stead, the single-threaded re-
striction in agree amounts to 
provisioning a single submitter 
and setting the parser task limit 
value to 1. Because one task is 
always assumed to be running, 
doing so effectively forbids the 
chart parser from creating new 
threads for agenda tasks. 

Single-threaded operation could be construed as a common ground between the systems. The 
rationale for limiting agree to single-threaded mode is the assumption that throughput scal-
ing—whether achieved through multiple parser processes or through intrinsic concurrency—
would benefit all systems relatively equally. Unfortunately, as the preceding discussion has 

intimated, because agree does 
not differentiate a tasking limit 
of 1 from any other value, its 
concurrency expenses—such 
as the use of atomic processor 
instructions and, significantly, 
the act of forming closures 
over parser work items—are 
still active when it is limiting 
itself to a single thread. Single-
threaded batch processing per-
formance is shown in Figure 
22. These results were dis-
cussed in the introduction to 
this chapter. 

The second batch processing model admits that penalizing agree by saddling it with concur-
rency overheads that go unused may be just as arbitrary as comparing single- to multi-threaded 
results. In this test, the corpus is exhaustively parsed and unpacked by each parser according its 

 

Figure 22. Batch processing performance on the ‘hike’ corpus. Discussion 
can be found in the chapter introduction. 

 

Figure 23. Single-sentence real-time performance on the ‘hike’ corpus. 
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best means. With 8-way concurrency enabled, agree parses the corpus in 42 seconds (Figure 
23). 

The introduction to this chapter stressed the difficulty of interpreting end-to-end parser testing 
results, and presented data to illustrate the point. With this caveat in mind, the result of this 
experiment (Figure 22) can be described in general terms. Despite being configured with con-
currency disabled, agree shows the best scaling performance, meaning that it exhibits the 
smallest increases in slowdown as sentences get longer. However, the sentences in the test cor-
pus are not long enough, on average, for this factor to guarantee the fastest parsing for the cor-
pus as a whole, and PET completes the task fastest. 

5.5.2 Real-time requirement 
The intention of the second overall evaluation scenario is to model applications with real-time 
requirements, such as speech processing or web interaction. Here, the objective is to obtain the 
fastest result for a single sentence. Sentence pipelining is not relevant because there is only a 
single sentence to process. As with the second batch processing test, any attributes particular to 
a parser which do not alter its linguistic results are permitted. The discussion of this section 
naturally overlaps with the discussion of parsing throughput which follows in Section 5.5.3. 

 Today we might easily get tempted to take a hike on the glacier when we look down 
on the glacier from the Oslo plane. 

(5.4) 

For these tests, exhaustive parsing and unpacking of sentence (5.4) (giving 195,605 analyses) 
is studied. This is one of the sentences that was excluded from the tests performed in Section 
5.5.1 because it could not be exhaustively unpacked by the LKB. The same sentence will be 
used to analyze the throughput scaling of agree and PET in Section 5.5.3. The job requires a 
large number of top-level unifications: about 500 in morphological analysis, 100,000 in the 

main parse, and 900,000 
in exhaustive unpacking. 
To support that discus-
sion, the presentation be-
gins with detailed results 
from agree. Comparison 
with the baseline parsers 
will be presented shortly. 

Sentence (5.4) is parsed 
and exhaustively un-
packed with the agree 
parser concurrency lim-
ited over the range {1, 2, 
… 25, 100,∞}. Configur-
ing the parser with an 

 

Figure 24. 8-CPU performance scaling of the agree parser with a 24-word sentence. 
When the parser would exceed the task limit, it executes the closure immediately 
instead of queuing another task to the runtime. Performance improvement is not yet 
constrained by other resource limitations when adding the eighth physical processor 
(the maximum configuration tested). Beyond this point, no over-commitment penal-
ty is seen. 
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infinite task limit means that every task conceived by the parser is queued, which delegates full 
responsibility for managing processor over-commitment to Task<T>. Results, shown in Figure 
24, show competent scaling for agree. After exhibiting poor performance of 126 seconds when 
limited to just one processor, parse time monotonically decreases as additional processors are 
permitted. As expected on a machine with eight physical CPUs, a near-minimum value of 
28.19 seconds occurs when the parser limits itself to creating eight tasks. This is a bit surpris-
ing because not all phases of the parse task are expected to be able to submit that many tasks. 
For example, after morphological analysis but before the main parse, chart dependencies are 
evaluated as a single-threaded operation. The explanation is that, as intended, this test is over-
whelmingly dominated by unification work. 

System parse time, sec. 
LKB d.n.f., > 7200.00 
PET 39.47 

agree 
parser task limit = 1 126.13 
min (at parser task limit = 8) 28.19 
parser task limit > 8 (avg.) 29.84 

Table 7. Comparison of the results from Figure 24 with other parsers. 

When physical processors are over-committed, the Task<T> system exhibits sensible behavior. 
Average parse time in this region is 29.84 seconds with a standard deviation of only 1.13 se-
conds (3.8%). Table 7 extends the analysis of Figure 24 to the LKB and PET. With only a sin-
gle processor, PET parses the sentence in 39.47 seconds, clearly surpassing both the LKB 
(which was not able to complete the task within two hours), and agree, which took just over 
two minutes. 

5.5.3 agree parser throughput and scaling 
To evaluate the benefit of concurrency to the agree implementation, scaling was studied across 
a range of concurrency levels. The objective was to determine the degree to which contention 
degrades parsing performance. Concurrency overheads can be categorized as those for which 
agree is responsible, and those which occur within the runtime environment’s Task<T> facility. 
In the former category, primarily, is contention in the lock-free parse chart. Details of this 
component are beyond the scope of this thesis, but in short, each cell of the parse chart is inde-
pendently protected by an extremely brief “optimistic” sequence of atomic processor instruc-
tions. This means that every chart operation always assumes that it will succeed, and proceeds 
without locking, protected only by detecting rejected CMPEXCH results (expected value colli-
sions). When detected, this contention requires that the operation be retried anew. The mecha-
nism is simple, but suffers extreme penalties when multiple CPU cores crowd around a popular 
chart cell. 

Results from the real-time requirements testing were used to analyze whether contention was 
negatively affecting agree’s CPU scaling. If it were, parse time might begin to trend upwards 
before reaching the number of physical processors. This is not observed, so contention does 
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not seem to be implicated. This same data could also provide evidence of disproportionate ad-
ministrative overheads associated with the CLR’s tasking support. If drastically overcommit-
ting the runtime’s task pool incurred a steep penalty, parse time for the unconstrained configu-
ration—which actually ends up queuing a peak of about over 4,313 parser tasks for this one 
sentence—would rise in contrast to the parse time for, say, 5 CPUs. This, too, is not observed, 
suggesting that Task<T> is, as claimed, sophisticated and well-tuned. 

Beyond the overheads 
internal to Task<T> just 
mentioned above are 
overheads associated 
with creating closures 
over the parser work 
items, in order that they 
can be submitted to 
Task<T>. In the current 
design, this penalty is 
borne even when the par-
ser is configured for sin-
gle-threaded operation. In 
fact, the expensive atom-
ic processor instructions 

that protect the lock-free chart, and several other concurrency considerations that become un-
necessary, are all still observed when only a single CPU is active. As mentioned in section 
5.5.1, this complicates evaluation because it entails that limiting agree to single-threaded oper-
ation does not trivially enable conclusive performance comparison between its unifier and 
storage systems and those of those of the single-threaded control group.  

In Figure 25, the two distinct scaling mechanisms available in agree are compared. The per-
formance data are aggregated over parsing the entire ‘hike’ corpus and independently normal-
ized, for each mechanism, to 1.0. In the parser tasks method, the parser limits the number of 
tasks it creates, as described in Section 5.5.1. This method is compared to the submitter meth-
od. Though sharing the same grammar, each submitter supervises the submission of one sen-
tence at a time to a parser instance. Sentences can be spooled from a source shared amongst 
multiple submitters, or from entirely separate sources. Thus the second tested configuration is 
the number of submitters provisioned, where each submitter’s parser instance is configured to 
limit itself to creating a single task. 

                                                   
79 Thanks to Woodley Packard for suggesting this presentation format. 

 

Figure 25. Comparison of agree’s scaling mechanisms—the parser task limit, and 
the number of submitter instances—aggregated over the ‘hike’ corpus. The y-axis is 
normalized to the single-task performance for either method.79 
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These data indicate good scaling throughout the range of physical CPUs. The submitter mech-
anism is more coarse-grained than the parser tasks mechanism; as expected, it incurs greater 
degradation when the number of CPUs is oversubscribed (greater than eight). Over-
subscription of parser tasks fares better, a credit to the operating system facility which adap-
tively manages their scheduling. 

Dividing each net throughput observation by the total number of CPUs it engages gives 
throughput per CPU. The values are also normalized—independently for each mechanism—to 
1.0, and linear trends are then plotted. A perfectly horizontal line is optimal, since it would in-
dicate that adding additional processors has no effect on those already operating. With eight 
processors, overall performance has deteriorated to 57% of what would be expected if there 
were no concurrency overhead for the submitter, and to 51% for the finer-grained mechanism. 

The data highlight a few positive results. First and most obviously, performance losses from 
medium-grained concurrency are nearly identical to those from the embarrassingly parallel ap-
proach. Reviewing what each is expected to be susceptible to, both will experience contention 
for system memory bandwidth, but only the former should also experience shared data conten-
tion and cache miss penalties.80 That they decrease in such close accord is an important result 
for this thesis and for agree as a whole, because it means that its ability to bring multiple pro-
cessors to bear on a single parsing task—that is, on parsing a single, complex sentence—does 
not imply disproportionate waste of the machine’s resources. Across the entire range tested in 
Figure 25, the more flexible, finer-grained mechanism adds the capability of accommodating 
real-time parsing requirements with no sacrifice of agree’s fundamental unification through-
put. 

The preceding discussion suggests that, for batch processing, there is little need to worry about 
which agree concurrency mode or modes are used, and experiments largely bear this out. Nev-
ertheless, miniscule—but repeatable—performance differences are obtained when provisioning 
different submitter and parser task limit configurations. In fact, peak performance on the 8-core 
test machine is obtained when using two submitters, each limited to queuing a dozen tasks or 
so. This balance between coarse-grained and finer-grained tasking maintains a 2-3% perfor-
mance improvement versus other configurations. An intuitive explanation for the result is that 
having more than one task running at all times helps smooth over the brief phases of single-
threaded activity (tokenization, chart dependencies, etc.) inherent in parsing a sentence; but 
more than two coarse-grained tasks causes memory strain because the simultaneous parsing of 
unrelated sentences produces too many intermediate analysis structures. 

                                                   
80 Even though multiple submitters share the same grammar, their access is read-only, which should cause no contention. 
The exception is the case of false sharing—described in footnote 57—which is easy to fix, but hard to detect and locate. 
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A second notable result from Figure 25 is that, with the finer-grained mechanism, increasing 
from one CPU to two increases the throughput per CPU slightly, reaching the normalization 
maximum with two—rather than just one—active processor. The result indicates the degree to 
which contention affects the parser in single-threaded mode. Concurrency overheads—the so-
called ‘communication’ penalties—inherent in having multiple threads work on the same task, 
are found to be minimal. Figure 26 zooms in to the interesting part of the graph. 

Although the slight 
degree of concurren-
cy overhead is 
properly attributed to 
the parser compo-
nent—which is not 
itself a subject of this 
thesis—it is im-
portant confirm that 
its implementation 
details are not signif-
icantly coloring 
agree’s scaling and 
throughput results. 

5.6 Evaluation summary 
This chapter evaluated array storage and the array storage unifier in realistic grammar pro-
cessing tasks by exercising them with agree’s concurrent chart parser. Overall, the new meth-
ods are deemed competitive contributions to contemporary research. Concurrency support adds 
some overhead to agree which cannot be disabled, so the system becomes most competitive 
when running on multi-core hardware. This property is most relevant to applications with real-
time requirements, where parse results for complex sentences are needed as quickly as possi-
ble, and without regard for computational expense. In this test, concurrency allows the new 
system to parse and exhaustively unpack a twenty-four word sentence 24% faster than the 
comparison system. 

In agree, two distinct concurrency features—sentence spooling and finer-grained parser task-
ing—are both coordinated by the same adaptive supervisor. This flexible model simplifies con-
figuration and provisioning, enabling agree to rapidly and automatically respond to changing 
parsing conditions. This suggests a scenario for which agree is ideally suited: the batch pro-
cessing of corpora which contain unpredictable variation in sentence complexity. Because 
agree dynamically adapts its parser concurrency level based on a process-wide consideration 
of memory consumption, it is able to add more tasks when processing simple inputs, and hold 
back on starting additional sentences when working on a complex input.  

 
Figure 26. Detail from Figure 25. The overheads from agree’s medium-grained concur-
rency are exposed. 
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6 Conclusion 
This thesis describes a new approach to the storage of typed feature structures appropriate for 
linguistic modeling with constraint-based unification grammars. Nodes comprising a single 
TFS are stored as tuples in a fixed-size, read-only array which serves to consolidate a large 
number of system allocations into just one. 

Also described is a unification algorithm suited to the new storage paradigm. By incorporating 
reference to the mixed-arity feature-value maps of the participating input structures in its de-
scription of the putative result structure, the unification algorithm obtains a simplifying guaran-
tee, namely, that the result structure is necessarily latent within that joint set of maps. The for-
mal result is that the unifier requires no operationally variant data structures relevant to the tra-
versal conditions, and is always able to sufficiently express the output TFS within an exclu-
sively a priori framework. 

The techniques are demonstrated in agree, a new DELPH-IN compatible grammar engineering 
environment which was developed for this thesis. Comparisons between agree and existing 
parsers show that array TFS storage and its companion unifier are effective. Evaluated on an 
identical task, the new system manifests performance in league with a widely-used high-
performance system. For comparison purposes, these tests required that agree’s concurrency 
features be disabled, but in other testing, the system’s concurrency scaling has proven to be 
one of its most compelling qualities.  
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